Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = immersed membrane reactor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3689 KiB  
Article
Application of Immersed Membrane Bioreactor for Semi-Continuous Production of Polyhydroxyalkanoates from Organic Waste-Based Volatile Fatty Acids
by Danh H. Vu, Amir Mahboubi, Andrew Root, Ivo Heinmaa, Mohammad J. Taherzadeh and Dan Åkesson
Membranes 2023, 13(6), 569; https://doi.org/10.3390/membranes13060569 - 31 May 2023
Cited by 8 | Viewed by 3039
Abstract
Volatile fatty acids (VFAs) appear to be an economical carbon feedstock for the cost-effective production of polyhydroxyalkanoates (PHAs). The use of VFAs, however, could impose a drawback of substrate inhibition at high concentrations, resulting in low microbial PHA productivity in batch cultivations. In [...] Read more.
Volatile fatty acids (VFAs) appear to be an economical carbon feedstock for the cost-effective production of polyhydroxyalkanoates (PHAs). The use of VFAs, however, could impose a drawback of substrate inhibition at high concentrations, resulting in low microbial PHA productivity in batch cultivations. In this regard, retaining high cell density using immersed membrane bioreactor (iMBR) in a (semi-) continuous process could enhance production yields. In this study, an iMBR with a flat-sheet membrane was applied for semi-continuous cultivation and recovery of Cupriavidus necator in a bench-scale bioreactor using VFAs as the sole carbon source. The cultivation was prolonged up to 128 h under an interval feed of 5 g/L VFAs at a dilution rate of 0.15 (d−1), yielding a maximum biomass and PHA production of 6.6 and 2.8 g/L, respectively. Potato liquor and apple pomace-based VFAs with a total concentration of 8.8 g/L were also successfully used in the iMBR, rendering the highest PHA content of 1.3 g/L after 128 h of cultivation. The PHAs obtained from both synthetic and real VFA effluents were affirmed to be poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with a crystallinity degree of 23.8 and 9.6%, respectively. The application of iMBR could open an opportunity for semi-continuous production of PHA, increasing the feasibility of upscaling PHA production using waste-based VFAs. Full article
Show Figures

Figure 1

24 pages, 5159 KiB  
Article
Radiolysis-Assisted Direct Growth of Gold-Based Electrocatalysts for Glycerol Oxidation
by Nazym Tuleushova, Aisara Amanova, Ibrahim Abdellah, Mireille Benoit, Hynd Remita, David Cornu, Yaovi Holade and Sophie Tingry
Nanomaterials 2023, 13(11), 1713; https://doi.org/10.3390/nano13111713 - 23 May 2023
Cited by 7 | Viewed by 2197
Abstract
The electrocatalytic oxidation of glycerol by metal electrocatalysts is an effective method of low-energy-input hydrogen production in membrane reactors in alkaline conditions. The aim of the present study is to examine the proof of concept for the gamma-radiolysis-assisted direct growth of monometallic gold [...] Read more.
The electrocatalytic oxidation of glycerol by metal electrocatalysts is an effective method of low-energy-input hydrogen production in membrane reactors in alkaline conditions. The aim of the present study is to examine the proof of concept for the gamma-radiolysis-assisted direct growth of monometallic gold and bimetallic gold–silver nanostructured particles. We revised the gamma radiolysis procedure to generate free-standing Au and Au-Ag nano- and micro-structured particles onto a gas diffusion electrode by the immersion of the substrate in the reaction mixture. The metal particles were synthesized by radiolysis on a flat carbon paper in the presence of capping agents. We have integrated different methods (SEM, EDX, XPS, XRD, ICP-OES, CV, and EIS) to examine in detail the as-synthesized materials and interrogate their electrocatalytic efficiency for glycerol oxidation under baseline conditions to establish a structure–performance relationship. The developed strategy can be easily extended to the synthesis by radiolysis of other types of ready-to-use metal electrocatalysts as advanced electrode materials for heterogeneous catalysis. Full article
(This article belongs to the Special Issue Advances in Nanomaterials for Application in Electrochemical Devices)
Show Figures

Figure 1

17 pages, 2616 KiB  
Article
Ultrafiltration Membranes System: A Proposal to Remove Emerging Pollutants in Urban Wastewater
by Ana Belén Lozano Avilés, Francisco Del Cerro Velázquez and Fernando Lozano Rivas
Membranes 2022, 12(12), 1234; https://doi.org/10.3390/membranes12121234 - 7 Dec 2022
Cited by 7 | Viewed by 3110
Abstract
Considering the important role that wastewater reuse plays in the water cycle and in the current water scenario immersed in a severe drought, the search for technologies that allow obtaining quality water for reuse is increasingly relevant. In this sense, the membrane biological [...] Read more.
Considering the important role that wastewater reuse plays in the water cycle and in the current water scenario immersed in a severe drought, the search for technologies that allow obtaining quality water for reuse is increasingly relevant. In this sense, the membrane biological reactor (MBR) is an alternative to traditional activated sludge systems, in which the separation of biomass and treatment water is carried out by membrane filtration instead of decantation. This study made it possible to confirm the presence of emerging pollutants in the wastewater entering the WWTPs under study, to study the behavior and performance of MBR systems with hollow fiber membranes and flat membranes in obtaining reclaimed wastewater for subsequent reuse, and to compare it with the degree of elimination obtained in conventional biological treatment. It has been demonstrated that this technology is almost 100% effective in the elimination of nutrients, organic matter, pathogens, organic micropollutants, metals, etc., and has achieved different percentages of success in eliminating emerging pollutants depending on their nature: 35% in insecticides and herbicides, 45% in anxiolytics, psychiatric drugs, and industrial disinfectants, 75% in antibiotics, and around 100% in analgesics, anti-inflammatory drugs, and hormones. It has also contributed to the establishment of monitoring protocols for emerging pollutants in the WWTPs under study and to the evaluation of their risks, as well as the development and implementation of advanced regeneration systems that are economically favorable for increasing the quality of WWTP effluents for their reuse. Full article
(This article belongs to the Section Membrane Applications)
Show Figures

Figure 1

30 pages, 3986 KiB  
Article
Batch and Flow Ultrasound-Assisted Extraction of Grape Stalks: Process Intensification Design up to a Multi-Kilo Scale
by Giorgio Grillo, Luisa Boffa, Salvatore Talarico, Roberto Solarino, Arianna Binello, Giuliano Cavaglià, Samir Bensaid, Galina Telysheva and Giancarlo Cravotto
Antioxidants 2020, 9(8), 730; https://doi.org/10.3390/antiox9080730 - 10 Aug 2020
Cited by 48 | Viewed by 4397
Abstract
Nowadays, approximately 1 billion kg/y of grape stalks, with a remarkable polyphenols content, are produced worldwide. In this paper, the extraction process intensification of polyphenols in water was achieved under ultrasound-assisted recovery, focusing on kinetics and scaling-up factors. Immersion and cup-horn systems were [...] Read more.
Nowadays, approximately 1 billion kg/y of grape stalks, with a remarkable polyphenols content, are produced worldwide. In this paper, the extraction process intensification of polyphenols in water was achieved under ultrasound-assisted recovery, focusing on kinetics and scaling-up factors. Immersion and cup-horn systems were exploited as acoustic cavitation sources, and the total phenolic content (TPC) was chosen to assess the process efficiency. The kinetics were evaluated by Peleg’s hyperbolic model, and the effect of both the initial feedstock granulometry and ultrasound size-reduction were determined. The results were compared with conventional extraction methods (data analysis by ANOVA). The best polyphenols yield was obtained after 45 min of sonication, giving between 29.71 and 31.89 mg/g (gallic acid equivalents over the dry matter). The extracts were characterized using HPLC-DAD, UPLC-ESI-MS/MS, DPPH assay (2,2-diphenyl-1-picrylhydrazyl), TEAC assay (Trolox equivalent antioxidant capacity), and proanthocyanidin content determination. The flow-mode extraction procedure of grape stalks (2 kg) was carried out in a 15 L reactor. A semi-industrial decanter unit and a bag-filter were the keys units of the downstream operations. The resulting particle-free solution underwent nanofiltration on a membrane pilot skid, providing a final polyphenols-enriched stream concentrated up to 355.91%, as shown by the antioxidant activity and TPC. Full article
Show Figures

Graphical abstract

Back to TopTop