Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = imidazole glycerol phosphate synthase subunit

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 12317 KiB  
Article
Combining Subtractive Genomics with Computer-Aided Drug Discovery Techniques to Effectively Target S. sputigena in Periodontitis
by Mallari Praveen, Chendruru Geya Sree, Simone Brogi, Vincenzo Calderone and Kamakshya Prasad Kanchan Prava Dalei
Computation 2025, 13(2), 34; https://doi.org/10.3390/computation13020034 - 1 Feb 2025
Viewed by 1560
Abstract
This study aimed to provide an inclusive in silico investigation for the identification of novel drug targets that can be exploited to develop drug candidates for treating oral infections caused by S. sputigena. By coupling subtractive genomics with an in silico drug [...] Read more.
This study aimed to provide an inclusive in silico investigation for the identification of novel drug targets that can be exploited to develop drug candidates for treating oral infections caused by S. sputigena. By coupling subtractive genomics with an in silico drug discovery approach, we identified dTDP-4-dehydrorhamnose 3,5-epimerase (UniProt ID: C9LUR0), UTP-glucose-1-phosphate uridyltransferase (UniProt ID: C9LRH1), and imidazole glycerol phosphate synthase (UniProt ID: C9LTU7) as three unique proteins crucial for the S. sputigena life cycle with no substantial similarity to human proteins. These potential drug targets served as the starting point for screening bioactive phytochemicals (1090 compounds) from the Indian Medicinal Plants, Phytochemistry and Therapeutics (IMPPAT) database. Among the screened natural products, cubebin (IMPHY001912) showed a higher affinity for two of the three selected targets, as evidenced by molecular docking and molecular dynamics studies. Given its favorable drug-like profile and possible multitargeting behavior, cubebin could be further exploited as an antibacterial agent for treating S. sputigena-mediated oral infections. It is worth nothing that cubebin could be the active ingredient of appropriate formulations such as mouthwash and/or toothpaste to treat S. sputigena-induced periodontitis, with the advantage of limiting the adverse effects that could affect the use of current drugs. Full article
(This article belongs to the Section Computational Biology)
Show Figures

Figure 1

Back to TopTop