Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = image and voiceprint data

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 1708 KB  
Article
Distribution Network Electrical Equipment Defect Identification Based on Multi-Modal Image Voiceprint Data Fusion and Channel Interleaving
by An Chen, Junle Liu, Wenhao Zhang, Jiaxuan Lu, Jiamu Yang and Bin Liao
Processes 2026, 14(2), 326; https://doi.org/10.3390/pr14020326 - 16 Jan 2026
Abstract
With the explosive growth in the quantity of electrical equipment in distribution networks, traditional manual inspection struggles to achieve comprehensive coverage due to limited manpower and low efficiency. This has led to frequent equipment failures including partial discharge, insulation aging, and poor contact. [...] Read more.
With the explosive growth in the quantity of electrical equipment in distribution networks, traditional manual inspection struggles to achieve comprehensive coverage due to limited manpower and low efficiency. This has led to frequent equipment failures including partial discharge, insulation aging, and poor contact. These issues seriously compromise the safe and stable operation of distribution networks. Real-time monitoring and defect identification of their operation status are critical to ensuring the safety and stability of power systems. Currently, commonly used methods for defect identification in distribution network electrical equipment mainly rely on single-image or voiceprint data features. These methods lack consideration of the complementarity and interleaved nature between image and voiceprint features, resulting in reduced identification accuracy and reliability. To address the limitations of existing methods, this paper proposes distribution network electrical equipment defect identification based on multi-modal image voiceprint data fusion and channel interleaving. First, image and voiceprint feature models are constructed using two-dimensional principal component analysis (2DPCA) and the Mel scale, respectively. Multi-modal feature fusion is achieved using an improved transformer model that integrates intra-domain self-attention units and an inter-domain cross-attention mechanism. Second, an image and voiceprint multi-channel interleaving model is applied. It combines channel adaptability and confidence to dynamically adjust weights and generates defect identification results using a weighting approach based on output probability information content. Finally, simulation results show that, under the dataset size of 3300 samples, the proposed algorithm achieves a 8.96–33.27% improvement in defect recognition accuracy compared with baseline algorithms, and maintains an accuracy of over 86.5% even under 20% random noise interference by using improved transformer and multi-channel interleaving mechanism, verifying its advantages in accuracy and noise robustness. Full article
Back to TopTop