Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = ilicicolin H

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 2409 KiB  
Article
Trichoderma reesei Contains a Biosynthetic Gene Cluster That Encodes the Antifungal Agent Ilicicolin H
by Mary L. Shenouda, Maria Ambilika and Russell J. Cox
J. Fungi 2021, 7(12), 1034; https://doi.org/10.3390/jof7121034 - 1 Dec 2021
Cited by 14 | Viewed by 4117
Abstract
The trili biosynthetic gene cluster (BGC) from the well-studied organism Trichoderma reesei was studied by heterologous expression in the fungal host Aspergillus oryzae. Coexpression of triliA and triliB produces two new acyl tetramic acids. Addition of the ring-expanding cytochrome P450 encoded by [...] Read more.
The trili biosynthetic gene cluster (BGC) from the well-studied organism Trichoderma reesei was studied by heterologous expression in the fungal host Aspergillus oryzae. Coexpression of triliA and triliB produces two new acyl tetramic acids. Addition of the ring-expanding cytochrome P450 encoded by triliC then yields a known pyridone intermediate to ilicicolin H and a new chain-truncated shunt metabolite. Finally, addition of the intramolecular Diels-Alderase encoded by triliD affords a mixture of 8-epi ilicicolin H and ilicicolin H itself, showing that the T. reesei trili BGC encodes biosynthesis of this potent antifungal agent. Unexpected A. oryzae shunt pathways are responsible for the production of the new compounds, emphasising the role of fungal hosts in catalysing diversification reactions. Full article
Show Figures

Figure 1

13 pages, 3040 KiB  
Article
Discovery of Survivin Inhibitors Part 1: Screening the Harbor Branch Pure Compound Library
by Esther A. Guzmán, Tara P. Pitts, Kirstie R. Tandberg, Priscilla L. Winder and Amy E. Wright
Mar. Drugs 2021, 19(2), 73; https://doi.org/10.3390/md19020073 - 30 Jan 2021
Cited by 4 | Viewed by 3083
Abstract
Survivin is a 16.5 KDa protein whose functions include promoting cellular mitosis, angiogenesis, and senescence as well as inhibiting apoptosis. Higher survivin expression is found in cancer tissues than normal tissues, and this expression correlates with disease progression and aggressiveness. Survivin has been [...] Read more.
Survivin is a 16.5 KDa protein whose functions include promoting cellular mitosis, angiogenesis, and senescence as well as inhibiting apoptosis. Higher survivin expression is found in cancer tissues than normal tissues, and this expression correlates with disease progression and aggressiveness. Survivin has been validated as a clinical target for cancer. Small molecules are important antagonists of survivin levels in cancer cells. A structurally diverse library of genetically encoded small molecules (natural products) derived from marine plants, invertebrates, and microbes was screened for their ability to reduce expression levels of survivin in the DLD-1 colon adenocarcinoma and the A549 nonsmall cell lung carcinoma cell lines. This led to the identification of this novel activity for the known compounds eryloside E, ilicicolin H, tanzawaic acid A, and p-hydroxyphenopyrrozin. Both eryloside E and ilicicolin H showed the ability to reduce survivin expression in the low micromolar range against both cell lines. Full article
Show Figures

Figure 1

10 pages, 1039 KiB  
Article
Heterologous Expression of Ilicicolin H Biosynthetic Gene Cluster and Production of a New Potent Antifungal Reagent, Ilicicolin J
by Xiaojing Lin, Siwen Yuan, Senhua Chen, Bin Chen, Hui Xu, Lan Liu, Huixian Li and Zhizeng Gao
Molecules 2019, 24(12), 2267; https://doi.org/10.3390/molecules24122267 - 18 Jun 2019
Cited by 24 | Viewed by 5107
Abstract
Ilicicolin H is a broad-spectrum antifungal agent targeting mitochondrial cytochrome bc1 reductase. Unfortunately, ilicicolin H shows reduced activities in vivo. Here, we report our effort on the identification of ilicicolin H biosynthetic gene cluster (BGC) by genomic sequencing a producing strain, Neonectria sp. [...] Read more.
Ilicicolin H is a broad-spectrum antifungal agent targeting mitochondrial cytochrome bc1 reductase. Unfortunately, ilicicolin H shows reduced activities in vivo. Here, we report our effort on the identification of ilicicolin H biosynthetic gene cluster (BGC) by genomic sequencing a producing strain, Neonectria sp. DH2, and its heterologous production in Aspergillus nidulans. In addition, a shunt product with similar antifungal activities, ilicicolin J, was uncovered. This effort would provide a base for future combinatorial biosynthesis of ilicicolin H analogues. Bioinformatics analysis suggests that the backbone of ilicicolin H is assembled by a polyketide-nonribosomal peptide synthethase (IliA), and then offloaded with a tetramic acid moiety. Similar to tenellin biosynthesis, the tetramic acid is then converted to pyridone by a putative P450, IliC. The decalin portion is most possibly constructed by a S-adenosyl-l-methionine (SAM)-dependent Diels-Alderase (IliD). Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Graphical abstract

19 pages, 1875 KiB  
Article
A Dereplication and Bioguided Discovery Approach to Reveal New Compounds from a Marine-Derived Fungus Stilbella fimetaria
by Sara Kildgaard, Karolina Subko, Emma Phillips, Violaine Goidts, Mercedes De la Cruz, Caridad Díaz, Charlotte H. Gotfredsen, Birgitte Andersen, Jens C. Frisvad, Kristian F. Nielsen and Thomas O. Larsen
Mar. Drugs 2017, 15(8), 253; https://doi.org/10.3390/md15080253 - 13 Aug 2017
Cited by 29 | Viewed by 6934
Abstract
A marine-derived Stilbella fimetaria fungal strain was screened for new bioactive compounds based on two different approaches: (i) bio-guided approach using cytotoxicity and antimicrobial bioassays; and (ii) dereplication based approach using liquid chromatography with both diode array detection and high resolution mass spectrometry. [...] Read more.
A marine-derived Stilbella fimetaria fungal strain was screened for new bioactive compounds based on two different approaches: (i) bio-guided approach using cytotoxicity and antimicrobial bioassays; and (ii) dereplication based approach using liquid chromatography with both diode array detection and high resolution mass spectrometry. This led to the discovery of several bioactive compound families with different biosynthetic origins, including pimarane-type diterpenoids and hybrid polyketide-non ribosomal peptide derived compounds. Prefractionation before bioassay screening proved to be a great aid in the dereplication process, since separate fractions displaying different bioactivities allowed a quick tentative identification of known antimicrobial compounds and of potential new analogues. A new pimarane-type diterpene, myrocin F, was discovered in trace amounts and displayed cytotoxicity towards various cancer cell lines. Further media optimization led to increased production followed by the purification and bioactivity screening of several new and known pimarane-type diterpenoids. A known broad-spectrum antifungal compound, ilicicolin H, was purified along with two new analogues, hydroxyl-ilicicolin H and ilicicolin I, and their antifungal activity was evaluated. Full article
Show Figures

Figure 1

Back to TopTop