Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = identification of control-related signal path

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 2418 KiB  
Article
Identification of Control-Related Signal Path for Semi-Active Vehicle Suspension with Magnetorheological Dampers
by Piotr Krauze
Sensors 2023, 23(12), 5770; https://doi.org/10.3390/s23125770 - 20 Jun 2023
Cited by 4 | Viewed by 2811
Abstract
This paper presents a method for the identification of control-related signal paths dedicated to a semi-active suspension with MR (magnetorheological) dampers, which are installed in place of standard shock absorbers. The main challenge comes from the fact that the semi-active suspension needs to [...] Read more.
This paper presents a method for the identification of control-related signal paths dedicated to a semi-active suspension with MR (magnetorheological) dampers, which are installed in place of standard shock absorbers. The main challenge comes from the fact that the semi-active suspension needs to be simultaneously subjected to road-induced excitation and electric currents supplied to the suspension MR dampers, while a response signal needs to be decomposed into road-related and control-related components. During experiments, the front wheels of an all-terrain vehicle were subjected to sinusoidal vibration excitation at a frequency equal to 12 Hz using a dedicated diagnostic station and specialised mechanical exciters. The harmonic type of road-related excitation allowed for its straightforward filtering from identification signals. Additionally, front suspension MR dampers were controlled using a wideband random signal with a 25 Hz bandwidth, different realisations, and several configurations, which differed in the average values and deviations of control currents. The simultaneous control of the right and left suspension MR dampers made it necessary to decompose the vehicle vibration response, i.e., the front vehicle body acceleration signal, into components related to the forces generated by different MR dampers. Measurement signals used for identification were taken from numerous sensors available in the vehicle, e.g., accelerometers, suspension force and deflection sensors, and sensors of electric currents, which control the instantaneous damping parameters of MR dampers. The final identification was carried out for control-related models evaluated in the frequency domain and revealed several resonances of the vehicle response and their dependence on the configurations of control currents. In addition, the parameters of the vehicle model with MR dampers and the diagnostic station were estimated based on the identification results. The analysis of the simulation results of the implemented vehicle model carried out in the frequency domain showed the influence of the vehicle load on the absolute values and phase shifts of control-related signal paths. The potential future application of the identified models lies in the synthesis and implementation of adaptive suspension control algorithms such as FxLMS (filtered-x least mean square). Adaptive vehicle suspensions are especially preferred for their ability to quickly adapt to varying road conditions and vehicle parameters. Full article
(This article belongs to the Collection Sensors and Actuators for Intelligent Vehicles)
Show Figures

Figure 1

32 pages, 10855 KiB  
Article
Building Function Type Identification Using Mobile Signaling Data Based on a Machine Learning Method
by Wenyu Nie, Xiwei Fan, Gaozhong Nie, Huayue Li and Chaoxu Xia
Remote Sens. 2022, 14(19), 4697; https://doi.org/10.3390/rs14194697 - 20 Sep 2022
Cited by 8 | Viewed by 2905
Abstract
Identifying building function type (BFT) is vital for many studies and applications, such as urban planning, disaster risk assessment and management, and traffic control. Traditional remote sensing methods are commonly used for land use/cover classification, but they have some limitations in BFT identification. [...] Read more.
Identifying building function type (BFT) is vital for many studies and applications, such as urban planning, disaster risk assessment and management, and traffic control. Traditional remote sensing methods are commonly used for land use/cover classification, but they have some limitations in BFT identification. Considering that the dynamic variations of social sensing mobile signaling (MS) data at diurnal and daily scales are directly related to BFT, in this paper, we propose a method to infer BFT using MS data obtained from mobile devices. First, based on the different patterns of population dynamics within different building types, we propose a BFT classification scheme with five categories: residential (R), working (W), entertainment (E), visiting (V), and hospital (H). Then, a random forest (RF) classification model is constructed based on two days (one workday and one weekend) of MS data with a temporal resolution of one hour to identify the BFT. According to the cross-validation method, the overall classification accuracy is 84.89%, and the Kappa coefficient is 0.78. Applying the MS data-constructed RF model to the central areas of Beijing Dongcheng and Xicheng Districts, the overall detection rate is 97.35%. In addition, to verify the feasibility of the MS data, the Sentinel-2 (S2) remote sensing data are used for comparison, with a classification accuracy of 73.33%. The better performance of the MS method shows its excellent potential for BFT identification, as the spatial and temporal population dynamics reviewed based on MS data are more correlated with BFT than geometric or spectral features in remote sensing images. This is an innovative attempt to identify BFT with MS data, and such a method compensates for the scarcity of BFT studies driven by population dynamics. Overall, in this study, we show the feasibility of using time series MS data to identify BFT and we provide a new path for building function mapping at large scales. Full article
(This article belongs to the Special Issue Urban Sensing Methods and Technologies)
Show Figures

Figure 1

17 pages, 2217 KiB  
Article
Conserved Control Path in Multilayer Networks
by Bingbo Wang, Xiujuan Ma, Cunchi Wang, Mingjie Zhang, Qianhua Gong and Lin Gao
Entropy 2022, 24(7), 979; https://doi.org/10.3390/e24070979 - 15 Jul 2022
Cited by 2 | Viewed by 1980
Abstract
The determination of directed control paths in complex networks is important because control paths indicate the structure of the propagation of control signals through edges. A challenging problem is to identify them in complex networked systems characterized by different types of interactions that [...] Read more.
The determination of directed control paths in complex networks is important because control paths indicate the structure of the propagation of control signals through edges. A challenging problem is to identify them in complex networked systems characterized by different types of interactions that form multilayer networks. In this study, we describe a graph pattern called the conserved control path, which allows us to model a common control structure among different types of relations. We present a practical conserved control path detection method (CoPath), which is based on a maximum-weighted matching, to determine the paths that play the most consistent roles in controlling signal transmission in multilayer networks. As a pragmatic application, we demonstrate that the control paths detected in a multilayered pan-cancer network are statistically more consistent. Additionally, they lead to the effective identification of drug targets, thereby demonstrating their power in predicting key pathways that influence multiple cancers. Full article
(This article belongs to the Special Issue Dynamics of Complex Networks)
Show Figures

Figure 1

Back to TopTop