Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = ideal gas kinetic theory

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 891 KiB  
Article
Determination of the Diffusion Coefficients of Binary CH4 and C2H6 in a Supercritical CO2 Environment (500–2000 K and 100–1000 atm) by Molecular Dynamics Simulations
by Chun-Hung Wang, K. R. V. Manikantachari (Raghu), Artëm E. Masunov and Subith S. Vasu
Energies 2024, 17(16), 4028; https://doi.org/10.3390/en17164028 - 14 Aug 2024
Viewed by 1701
Abstract
The self-diffusion coefficients of carbonaceous fuels in a supercritical CO2 environment provide transport information that can help us understand the Allam Cycle mechanism at a high pressure of 300 atm. The diffusion coefficients of pure CO2 and binary CO2/CH [...] Read more.
The self-diffusion coefficients of carbonaceous fuels in a supercritical CO2 environment provide transport information that can help us understand the Allam Cycle mechanism at a high pressure of 300 atm. The diffusion coefficients of pure CO2 and binary CO2/CH4 and CO2/C2H6 at high temperatures (500 K~2000 K) and high pressures (100 atm~1000 atm) are determined by molecular dynamics simulations in this study. Increasing the temperature leads to an increase in the diffusion coefficient, and increasing the pressure leads to a decrease in the diffusion coefficients for both methane and ethane. The diffusion coefficient of methane at 300 atm is approximately 0.012 cm2/s at 1000 K and 0.032 cm2/s at 1500 K. The diffusion coefficient of ethane at 300 atm is approximately 0.016 cm2/s at 1000 K and 0.045 cm2/s at 1500 K. The understanding of diffusion coefficients potentially leads to the reduction in fuel consumption and minimization of greenhouse gas emissions in the Allam Cycle. Full article
Show Figures

Figure 1

52 pages, 27214 KiB  
Article
Physical and Mathematical Models of Quantum Dielectric Relaxation in Electrical and Optoelectric Elements Based on Hydrogen-Bonded Crystals
by Valeriy Kalytka, Ali Mekhtiyev, Yelena Neshina, Aliya Alkina, Raushan Aimagambetova, Gabit Mukhambetov, Aleksandr Bashirov, Dmitriy Afanasyev, Arkadiy Bilichenko, Dinara Zhumagulova, Zukhra Ismailova and Yelena Senina
Crystals 2023, 13(9), 1353; https://doi.org/10.3390/cryst13091353 - 6 Sep 2023
Cited by 2 | Viewed by 1539
Abstract
The quantum statistical properties of the proton subsystem in hydrogen-bonded crystals (HBC) are investigated. Based on the non-stationary Liouville operator equation (taking into account a number of assumptions established in the experiment), a quantum kinetic equation is constructed for the ensemble of non-interacting [...] Read more.
The quantum statistical properties of the proton subsystem in hydrogen-bonded crystals (HBC) are investigated. Based on the non-stationary Liouville operator equation (taking into account a number of assumptions established in the experiment), a quantum kinetic equation is constructed for the ensemble of non-interacting protons (an ideal proton gas) moving in the crystal potential image perturbed by the external electric field. The balanced density matrix for the unperturbed proton subsystem is constructed using the quantum canonical Gibbs distribution, and the non-balanced density matrix is calculated from the solutions of the nonlinear quantum kinetic equation by methods in linear approximation of perturbation theory for the blocking electrode model. Full quantum mechanical averaging of the polarization operator makes it possible to study the theoretical frequency-temperature spectra of the complex dielectric permittivity (CDP) calculated using quantum relaxation parameters that differ significantly from their semiclassical counterparts. A scheme is presented for an analytical study of the dielectric loss tangent in the region of quantum nonlinear relaxation in HBC. The results obtained in the given paper are of scientific interest in developing the theoretical foundations of proton conduction processes in energy-independent memory elements (with anomalously high residual polarization) based on thin films of ferroelectric materials in the ultralow temperature range (1–10 K). The theoretical results obtained have a direct application to the study of the tunneling mechanisms of spontaneous polarization in ferroelectric HBC with a rectangular hysteresis loop, in particular in crystals of potassium dideutrophosphate (KDP), widely used in nonlinear optics and laser technology. The quantum properties of proton relaxation in HBC can be applied in the future to the study of solid-state electrolytes with high proton conductivity for hydrogen energy, capacitor technology (superionics, varicodes), and elements of MIS and MSM structures in the development of resonant tunnel diodes for microelectronics and computer technology. Full article
(This article belongs to the Special Issue Theoretical Investigation on Non-covalent Interactions)
Show Figures

Figure 1

39 pages, 5497 KiB  
Article
Molecular Modeling of Supercritical Processes and the Lattice—Gas Model
by Yuri Konstantinovich Tovbin
Processes 2023, 11(9), 2541; https://doi.org/10.3390/pr11092541 - 24 Aug 2023
Cited by 7 | Viewed by 1543
Abstract
The existing possibilities for modeling the kinetics of supercritical processes at the molecular level are considered from the point of view that the Second Law of thermodynamics must be fulfilled. The only approach that ensures the fulfillment of the Second Law of thermodynamics [...] Read more.
The existing possibilities for modeling the kinetics of supercritical processes at the molecular level are considered from the point of view that the Second Law of thermodynamics must be fulfilled. The only approach that ensures the fulfillment of the Second Law of thermodynamics is the molecular theory based on the discrete–continuous lattice gas model. Expressions for the rates of the elementary stage on its basis give a self-consistent description of the equilibrium states of the mixtures under consideration. The common usage today of ideal kinetic models in SC processes in modeling industrial chemistry contradicts the non-ideal equation of states. The used molecular theory is the theory of absolute reaction rates for non-ideal reaction systems, which takes into account intermolecular interactions that change the effective activation energies of elementary stages. This allows the theory to describe the rates of elementary stages of chemical transformations and molecular transport at arbitrary temperatures and reagent densities in different phases. The application of this theory in a wide range of state parameters (pressure and temperature) is considered when calculating the rates of elementary bimolecular reactions and dissipative coefficients under supercritical conditions. Generalized dependencies are calculated within the framework of the law of the corresponding states for the coefficients of compressibility, shear viscosity, and thermal conductivity of pure substances, and for the coefficients of compressibility, self- and mutual diffusion, and shear viscosity of binary mixtures. The effect of density and temperature on the rates of elementary stages under supercritical conditions has been demonstrated for a reaction’s effective energies of activation, diffusion and share viscosity coefficients, and equilibrium constants of adsorption. Differences between models with effective parameters and the prospects for developing them by allowing for differences in size and contributions from the vibrational motions of components are described. Full article
Show Figures

Figure 1

15 pages, 1730 KiB  
Article
Arbitrage Equilibrium, Invariance, and the Emergence of Spontaneous Order in the Dynamics of Bird-like Agents
by Abhishek Sivaram and Venkat Venkatasubramanian
Entropy 2023, 25(7), 1043; https://doi.org/10.3390/e25071043 - 11 Jul 2023
Cited by 3 | Viewed by 1368
Abstract
The physics of active biological matter, such as bacterial colonies and bird flocks, exhibiting interesting self-organizing dynamical behavior has gained considerable importance in recent years. Current theoretical advances use techniques from hydrodynamics, kinetic theory, and non-equilibrium statistical physics. However, for biological agents, these [...] Read more.
The physics of active biological matter, such as bacterial colonies and bird flocks, exhibiting interesting self-organizing dynamical behavior has gained considerable importance in recent years. Current theoretical advances use techniques from hydrodynamics, kinetic theory, and non-equilibrium statistical physics. However, for biological agents, these approaches do not seem to recognize explicitly their critical feature: namely, the role of survival-driven purpose and the attendant pursuit of maximum utility. Here, we propose a game-theoretic framework, statistical teleodynamics, that demonstrates that the bird-like agents self-organize dynamically into flocks to approach a stable arbitrage equilibriumof equal effective utilities. This is essentially the invisible handmechanism of Adam Smith’s in an ecological context. What we demonstrate is for ideal systems, similar to the ideal gas or Ising model in thermodynamics. The next steps would involve examining and learning how real swarms behave compared to their ideal versions. Our theory is not limited to just birds flocking but can be adapted for the self-organizing dynamics of other active matter systems. Full article
(This article belongs to the Special Issue Generalized Statistical Thermodynamics II)
Show Figures

Figure 1

25 pages, 516 KiB  
Article
Dynamic Modeling for the Design and Cyclic Operation of an Atomic Layer Deposition (ALD) Reactor
by Curtisha D. Travis and Raymond A. Adomaitis
Processes 2013, 1(2), 128-152; https://doi.org/10.3390/pr1020128 - 19 Aug 2013
Cited by 23 | Viewed by 11034
Abstract
A laboratory-scale atomic layer deposition (ALD) reactor system model is derived for alumina deposition using trimethylaluminum and water as precursors. Model components describing the precursor thermophysical properties, reactor-scale gas-phase dynamics and surface reaction kinetics derived from absolute reaction rate theory are integrated to [...] Read more.
A laboratory-scale atomic layer deposition (ALD) reactor system model is derived for alumina deposition using trimethylaluminum and water as precursors. Model components describing the precursor thermophysical properties, reactor-scale gas-phase dynamics and surface reaction kinetics derived from absolute reaction rate theory are integrated to simulate the complete reactor system. Limit-cycle solutions defining continuous cyclic ALD reactor operation are computed with a fixed point algorithm based on collocation discretization in time, resulting in an unambiguous definition of film growth-per-cycle (gpc). A key finding of this study is that unintended chemical vapor deposition conditions can mask regions of operation that would otherwise correspond to ideal saturating ALD operation. The use of the simulator for assisting in process design decisions is presented. Full article
(This article belongs to the Special Issue Feature Papers)
Show Figures

Graphical abstract

Back to TopTop