Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = hypoxia-inducible factor-proline dioxygenases

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 1287 KB  
Review
HIF-α Prolyl Hydroxylase Inhibitors and Their Implications for Biomedicine: A Comprehensive Review
by Kiichi Hirota
Biomedicines 2021, 9(5), 468; https://doi.org/10.3390/biomedicines9050468 - 24 Apr 2021
Cited by 84 | Viewed by 17500
Abstract
Oxygen is essential for the maintenance of the body. Living organisms have evolved systems to secure an oxygen environment to be proper. Hypoxia-inducible factor (HIF) plays an essential role in this process; it is a transcription factor that mediates erythropoietin (EPO) induction at [...] Read more.
Oxygen is essential for the maintenance of the body. Living organisms have evolved systems to secure an oxygen environment to be proper. Hypoxia-inducible factor (HIF) plays an essential role in this process; it is a transcription factor that mediates erythropoietin (EPO) induction at the transcriptional level under hypoxic environment. After successful cDNA cloning in 1995, a line of studies were conducted for elucidating the molecular mechanism of HIF activation in response to hypoxia. In 2001, cDNA cloning of dioxygenases acting on prolines and asparagine residues, which play essential roles in this process, was reported. HIF-prolyl hydroxylases (PHs) are molecules that constitute the core molecular mechanism of detecting a decrease in the partial pressure of oxygen, or hypoxia, in the cells; they can be called oxygen sensors. In this review, I discuss the process of molecular cloning of HIF and HIF-PH, which explains hypoxia-induced EPO expression; the development of HIF-PH inhibitors that artificially or exogenously activate HIF by inhibiting HIF-PH; and the significance and implications of medical intervention using HIF-PH inhibitors. Full article
(This article belongs to the Special Issue Hypoxia-Inducible Factors: Regulation and Therapeutic Potential)
Show Figures

Figure 1

10 pages, 362 KB  
Article
The Hypothermic Influence on CHOP and Ero1-α in an Endoplasmic Reticulum Stress Model of Cerebral Ischemia
by Gagandip K. Poone, Henrik Hasseldam, Nina Munkholm, Rune S. Rasmussen, Nina V. Grønberg and Flemming F. Johansen
Brain Sci. 2015, 5(2), 178-187; https://doi.org/10.3390/brainsci5020178 - 15 May 2015
Cited by 23 | Viewed by 7375
Abstract
Hypoxia induced endoplasmic reticulum stress causes accumulation of unfolded proteins in the endoplasmic reticulum and activates the unfolded protein response, resulting in apoptosis through CCAAT-enhancer-binding protein homologous protein (CHOP) activation. In an in vitro and in vivo model of ischemic stroke, we investigated [...] Read more.
Hypoxia induced endoplasmic reticulum stress causes accumulation of unfolded proteins in the endoplasmic reticulum and activates the unfolded protein response, resulting in apoptosis through CCAAT-enhancer-binding protein homologous protein (CHOP) activation. In an in vitro and in vivo model of ischemic stroke, we investigated whether hypothermia regulates the unfolded protein response of CHOP and Endoplasmic reticulum oxidoreductin-α (Ero1-α), because Ero1-α is suggested to be a downstream CHOP target. The gene expression of CHOP and Ero1-α was measured using Quantitative-PCR (Q-PCR) in rat hippocampi following global cerebral ischemia, and in hypoxic pheochromocytoma cells during normothermic (37 °C) and hypothermic (31 °C) conditions. As a result of ischemia, a significant increase in expression of CHOP and Ero1-α was observed after three, six and twelve hours of reperfusion following global ischemia. A stable increase in CHOP expression was observed throughout the time course (p < 0.01, p < 0.0001), whereas Ero1-α expression peaked at three to six hours (p < 0.0001). Induced hypothermia in hypoxia stressed PC12 cells resulted in a decreased expression of CHOP after three, six and twelve hours (p < 0.0001). On the contrary, the gene expression of Ero1-α increased as a result of hypothermia and peaked at twelve hours (p < 0.0001). Hypothermia attenuated the expression of CHOP, supporting that hypothermia suppress endoplasmic reticulum stress induced apoptosis in stroke. As hypothermia further induced up-regulation of Ero1-α, and since CHOP and Ero1-α showed differential regulation as a consequence of both disease (hypoxia) and treatment (hypothermia), we conclude that they are regulated independently. Full article
(This article belongs to the Special Issue Neuroprotection against Ischemic Brain Injury)
Show Figures

Figure 1

Back to TopTop