Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = hyperspheric classification boundary

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 559 KB  
Article
Fault Diagnosis of Gas Insulated Switchgear Isolation Switch Based on Improved Support Vector Data Description Method
by Nan Zhang, Tianchi Wu, Yunpeng Zhang, Bo Yin, Xuebin Yang, Chengliang Liu and Senxiang Lu
Electronics 2025, 14(3), 540; https://doi.org/10.3390/electronics14030540 - 29 Jan 2025
Viewed by 1256
Abstract
To improve the efficiency and precision of fault diagnosis for isolation switches within Gas-insulated switchgear (GIS), this study introduces an advanced technique utilizing an enhanced support vector data description (SVDD) algorithm. Initially, various operational states of the GIS isolation switch are simulated, and [...] Read more.
To improve the efficiency and precision of fault diagnosis for isolation switches within Gas-insulated switchgear (GIS), this study introduces an advanced technique utilizing an enhanced support vector data description (SVDD) algorithm. Initially, various operational states of the GIS isolation switch are simulated, and the corresponding vibration signals are captured. Subsequently, both the entropy and time-domain features of these signals are extracted to construct a multi-dimensional feature space. High-dimensional feature datasets are then reduced in dimensionality using the kernel principal component analysis (KPCA) method. Furthermore, the conventional SVDD algorithm is modified by incorporating a penalty factor, which allows for a more adaptable classification boundary. This adaptation not only focuses on positive samples but also considers the influence of selected negative samples on the classification hypersphere. Finally, the collected experimental data are classified and predicted. The results indicate that this GIS fault-diagnosis approach effectively overcomes the limitations of traditional methods, which are heavily dependent on training sample data and demonstrate poor algorithm generalization performance. This method is proven to be applicable for the fault diagnosis of isolation switches in GIS. Full article
(This article belongs to the Special Issue Advanced Online Monitoring and Fault Diagnosis of Power Equipment)
Show Figures

Figure 1

17 pages, 414 KB  
Article
Multi-Class Hypersphere Anomaly Detection Based on Edge Outlier Exposure Set and Margin
by Min Gao, Xuan Liu, Di Xu and Guowei Yang
Mathematics 2024, 12(15), 2340; https://doi.org/10.3390/math12152340 - 26 Jul 2024
Viewed by 1801
Abstract
Currently, the decision boundary of the multi-class anomaly detection algorithm based on deep learning does not sufficiently capture the positive class region, posing a risk of abnormal sample features falling into the domain of normal sample features and potentially leading to misleading outcomes [...] Read more.
Currently, the decision boundary of the multi-class anomaly detection algorithm based on deep learning does not sufficiently capture the positive class region, posing a risk of abnormal sample features falling into the domain of normal sample features and potentially leading to misleading outcomes in practical applications. In response to the above problems, this paper proposes a new method called multi-class hypersphere anomaly detection (MMHAD) based on the edge outlier exposure set and margin. The method aims to utilize convolutional neural networks for joint training of all normal object classes, identifying a shared set of outlier exposures, learning compact identification features, and setting appropriate edge parameters to guide the model in mapping outliers outside the hypersphere. This approach enables more comprehensive detection of various types of exceptions. The experiments demonstrate that the algorithm is superior to the most advanced baseline method, with an improvement of 26.0%, 8.2%, and 20.1% on CIFAR-10 and 14.8%, 12.0%, and 20.1% on FMNIST in the cases of (2/8), (5/5), and (9,1), respectively. Furthermore, we investigate the challenging (2/18) case on CIFAR-100, where our method achieves approximately 17.4% AUROC gain. Lastly, for a recycling waste dataset with the (4/1) case, our MMHAD yields a notable 22% enhancement in performance. Experimental results show the effectiveness of the proposed model in multi-classification anomaly detection. Full article
Show Figures

Figure 1

19 pages, 6986 KB  
Article
Ensemble One-Class Support Vector Machine for Sea Surface Target Detection Based on k-Means Clustering
by Shichao Chen, Xin Ouyang and Feng Luo
Remote Sens. 2024, 16(13), 2401; https://doi.org/10.3390/rs16132401 - 29 Jun 2024
Cited by 11 | Viewed by 2362
Abstract
Sea surface target detection is a key stage in a typical target detection system and directly influences the performance of the whole system. As an effective discriminator, the one-class support vector machine (OCSVM) has been widely used in target detection. In OCSCM, training [...] Read more.
Sea surface target detection is a key stage in a typical target detection system and directly influences the performance of the whole system. As an effective discriminator, the one-class support vector machine (OCSVM) has been widely used in target detection. In OCSCM, training samples are first mapped to the hypersphere in the kernel space with the Gaussian kernel function, and then, a linear classification hyperplane is constructed in each cluster to separate target samples from other classes of samples. However, when the distribution of the original data is complex, the transformed data in the kernel space may be nonlinearly separable. In this situation, OCSVM cannot classify the data correctly, because only a linear hyperplane is constructed in the kernel space. To solve this problem, a novel one-class classification algorithm, referred to as ensemble one-class support vector machine (En-OCSVM), is proposed in this paper. En-OCSVM is a hybrid model based on k-means clustering and OCSVM. In En-OCSVM, training samples are clustered in the kernel space with the k-means clustering algorithm, while a linear decision hyperplane is constructed in each cluster. With the combination of multiple linear classification hyperplanes, a complex nonlinear classification boundary can be achieved in the kernel space. Moreover, the joint optimization of the k-means clustering model and OCSVM model is realized in the proposed method, which ensures the linear separability of each cluster. The experimental results based on the synthetic dataset, benchmark datasets, IPIX datasets, and SAR real data demonstrate the better performance of our method over other related methods. Full article
(This article belongs to the Special Issue Radar Signal Processing and Imaging for Ocean Remote Sensing)
Show Figures

Figure 1

19 pages, 4243 KB  
Article
A False Alarm Reduction Method for a Gas Sensor Based Electronic Nose
by Mohammad Mizanur Rahman, Chalie Charoenlarpnopparut, Prapun Suksompong, Pisanu Toochinda and Attaphongse Taparugssanagorn
Sensors 2017, 17(9), 2089; https://doi.org/10.3390/s17092089 - 12 Sep 2017
Cited by 11 | Viewed by 6594
Abstract
Electronic noses (E-Noses) are becoming popular for food and fruit quality assessment due to their robustness and repeated usability without fatigue, unlike human experts. An E-Nose equipped with classification algorithms and having open ended classification boundaries such as the k-nearest neighbor ( [...] Read more.
Electronic noses (E-Noses) are becoming popular for food and fruit quality assessment due to their robustness and repeated usability without fatigue, unlike human experts. An E-Nose equipped with classification algorithms and having open ended classification boundaries such as the k-nearest neighbor (k-NN), support vector machine (SVM), and multilayer perceptron neural network (MLPNN), are found to suffer from false classification errors of irrelevant odor data. To reduce false classification and misclassification errors, and to improve correct rejection performance; algorithms with a hyperspheric boundary, such as a radial basis function neural network (RBFNN) and generalized regression neural network (GRNN) with a Gaussian activation function in the hidden layer should be used. The simulation results presented in this paper show that GRNN has more correct classification efficiency and false alarm reduction capability compared to RBFNN. As the design of a GRNN and RBFNN is complex and expensive due to large numbers of neuron requirements, a simple hyperspheric classification method based on minimum, maximum, and mean (MMM) values of each class of the training dataset was presented. The MMM algorithm was simple and found to be fast and efficient in correctly classifying data of training classes, and correctly rejecting data of extraneous odors, and thereby reduced false alarms. Full article
(This article belongs to the Special Issue Electronic Tongues and Electronic Noses)
Show Figures

Figure 1

Back to TopTop