Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = hydrophoresis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
8 pages, 2977 KiB  
Article
Fabrication of Multilayer Molds by Dry Film Photoresist
by Narek E. Koucherian, Shijun Yan and Elliot E. Hui
Micromachines 2022, 13(10), 1583; https://doi.org/10.3390/mi13101583 - 23 Sep 2022
Cited by 4 | Viewed by 2828
Abstract
Dry film photoresists are widely employed to fabricate high-aspect-ratio microstructures, such as molds for microfluidic devices. Unlike liquid resists, such as SU-8, dry films do not require a cleanroom facility, and it is straightforward to prepare uniform and reproducible films as thick as [...] Read more.
Dry film photoresists are widely employed to fabricate high-aspect-ratio microstructures, such as molds for microfluidic devices. Unlike liquid resists, such as SU-8, dry films do not require a cleanroom facility, and it is straightforward to prepare uniform and reproducible films as thick as 500 µm. Multilayer patterning, however, can be problematic with dry film resists even though it is critical for a number of microfluidic devices. Layer-to-layer mask alignment typically requires the first layer to be fully developed, making the pattern visible, before applying and patterning the second layer. While a liquid resist can flow over the topography of previous layers, this is not the case with dry film lamination. We found that post-exposure baking of dry film photoresists can preserve a flat topography while revealing an image of the patterned features that is suitable for alignment to the next layer. We demonstrate the use of this technique with two different types of dry film resist to fabricate master molds for a hydrophoresis size-sorting device and a cell chemotaxis device. Full article
Show Figures

Figure 1

12 pages, 3758 KiB  
Article
Handheld Microflow Cytometer Based on a Motorized Smart Pipette, a Microfluidic Cell Concentrator, and a Miniaturized Fluorescence Microscope
by Byeongyeon Kim, Dayoung Kang and Sungyoung Choi
Sensors 2019, 19(12), 2761; https://doi.org/10.3390/s19122761 - 19 Jun 2019
Cited by 10 | Viewed by 5466
Abstract
Miniaturizing flow cytometry requires a comprehensive approach to redesigning the conventional fluidic and optical systems to have a small footprint and simple usage and to enable rapid cell analysis. Microfluidic methods have addressed some challenges in limiting the realization of microflow cytometry, but [...] Read more.
Miniaturizing flow cytometry requires a comprehensive approach to redesigning the conventional fluidic and optical systems to have a small footprint and simple usage and to enable rapid cell analysis. Microfluidic methods have addressed some challenges in limiting the realization of microflow cytometry, but most microfluidics-based flow cytometry techniques still rely on bulky equipment (e.g., high-precision syringe pumps and bench-top microscopes). Here, we describe a comprehensive approach that achieves high-throughput white blood cell (WBC) counting in a portable and handheld manner, thereby allowing the complete miniaturization of flow cytometry. Our approach integrates three major components: a motorized smart pipette for accurate volume metering and controllable liquid pumping, a microfluidic cell concentrator for target cell enrichment, and a miniaturized fluorescence microscope for portable flow cytometric analysis. We first validated the capability of each component by precisely metering various fluid samples and controlling flow rates in a range from 219.5 to 840.5 μL/min, achieving high sample-volume reduction via on-chip WBC enrichment, and successfully counting single WBCs flowing through a region of interrogation. We synergistically combined the three major components to create a handheld, integrated microflow cytometer and operated it with a simple protocol of drawing up a blood sample via pipetting and injecting the sample into the microfluidic concentrator by powering the motorized smart pipette. We then demonstrated the utility of the microflow cytometer as a quality control means for leukoreduced blood products, quantitatively analyzing residual WBCs (rWBCs) in blood samples present at concentrations as low as 0.1 rWBCs/μL. These portable, controllable, high-throughput, and quantitative microflow cytometric technologies provide promising ways of miniaturizing flow cytometry. Full article
(This article belongs to the Special Issue Portable Biosensing Systems for Point-of-Care Diagnostic Applications)
Show Figures

Graphical abstract

Back to TopTop