Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = hydrofoil appendage

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 31586 KiB  
Article
Design and Principles Analysis of Hydrofoil Appendages for Reducing Resistance of High-Speed Ships
by Qian Chen, Zhihua Liu, Wentao Liu and Gangquan Zhao
J. Mar. Sci. Eng. 2024, 12(8), 1394; https://doi.org/10.3390/jmse12081394 - 14 Aug 2024
Cited by 2 | Viewed by 1800
Abstract
To reduce the resistance of high-speed displacement ships with Froude numbers (Fr) between 0.4 and 0.5, this paper proposes the installation of hydrofoils at the bow and stern of the ship. Firstly, starting from the bow wave, this paper proposes the [...] Read more.
To reduce the resistance of high-speed displacement ships with Froude numbers (Fr) between 0.4 and 0.5, this paper proposes the installation of hydrofoils at the bow and stern of the ship. Firstly, starting from the bow wave, this paper proposes the installation of a flat plate appendage at the free surface of the ship’s bow to suppress the height of the bow wave and thus reduce the hull resistance. Taking the DTMB 5415 ship model as the research object, CFD calculation results show that installing a flat plate appendage at the free surface of the ship’s bow can effectively suppress the height of the bow wave, and the total resistance reduction ratio can reach 6.49% when Fr = 0.45. Then, the flat plate appendage was improved to a hydrofoil appendage, further reducing the hull resistance. As a result, the total resistance reduction rate can reach 9.15% at Fr = 0.45. Following this, hydrofoil appendages were installed simultaneously at the bow and stern. The drag reduction effect and mechanism were studied, and the results show that the hydrofoils at the bow and stern have a good drag reduction effect. Suppressing the bow and stern waves and improving the flow field are the main reasons for the drag reduction. Finally, the drag reduction effect of the hydrofoil appendages was verified through experiments, demonstrating its excellent drag reduction effect when Fr = 0.4–0.5 and a maximum total resistance reduction ratio of 14.552%. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

13 pages, 6097 KiB  
Article
Tip Vortex Cavitation and Induced Noise Characteristics of Hydrofoils
by Suyong Shin, Ji-Woo Hong, David Nagarathinam, Byoung-Kwon Ahn and Sung-Gun Park
Appl. Sci. 2021, 11(13), 5906; https://doi.org/10.3390/app11135906 - 25 Jun 2021
Cited by 12 | Viewed by 3237
Abstract
Tip vortex cavitation is one of the most classical themes in fluid mechanics. Although many experimental and theoretical studies have been performed, unsolved problems still remain. In particular, the trailing vortices at the tip of the hydrofoil directly affects the hydrodynamic and acoustic [...] Read more.
Tip vortex cavitation is one of the most classical themes in fluid mechanics. Although many experimental and theoretical studies have been performed, unsolved problems still remain. In particular, the trailing vortices at the tip of the hydrofoil directly affects the hydrodynamic and acoustic performance of submerged objects such as the marine propeller, rudder and various foil-shaped appendages of the ship. In this study, the experimental results from the measurements of the vortex cavitation from the tip of two different three-dimensional hydrofoils are presented. Experiments have been carried out in Chungnam National University-Cavitation Tunnel (CNU-CT). By high speed imaging technique, the development process of vortex cavitation is observed in detail. Based on the high-speed images, physical features of the cavity inception and the swirling motion of the tip vortex cavity flow are examined. In addition, the induced noise characteristics in the vortex development process are examined by unsteady pressure measurements. The forces exerted on the hydrofoil were also measured using a dynamometer with a view to verify the scaling relation between the inception cavitation number and the non-dimensional parameters namely, the coefficient of lift, CL and the Reynolds number, Re. The results further shed light on the cause of the intense noise induced by tip vortex cavitation. Full article
Show Figures

Figure 1

Back to TopTop