Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = histogram of RCC

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 6893 KB  
Article
Exploring Overall and Component Complexities via Relative Complexity Change and Interacting Complexity Amplitudes in the Kolmogorov Plane: A Case Study of U.S. Rivers
by Dragutin T. Mihailović and Slavica Malinović-Milićević
Entropy 2025, 27(10), 1006; https://doi.org/10.3390/e27101006 - 26 Sep 2025
Viewed by 207
Abstract
One of the most challenging tasks in studying streamflow is quantifying how the complexities of environmental and dynamic parameters contribute to the overall system complexity. To address this, we employed Kolmogorov complexity (KC) metrics, specifically the Kolmogorov complexity spectrum (KC spectrum) and the [...] Read more.
One of the most challenging tasks in studying streamflow is quantifying how the complexities of environmental and dynamic parameters contribute to the overall system complexity. To address this, we employed Kolmogorov complexity (KC) metrics, specifically the Kolmogorov complexity spectrum (KC spectrum) and the Kolmogorov complexity plane (KC plane). These measures were applied to monthly streamflow time series averaged across 1879 gauge stations on U.S. rivers over the period 1950–2015. The variables analyzed included streamflow as a complex physical system, along with its key components: temperature, precipitation, and the Lyapunov exponent (LEX), which represents river dynamics. Using these metrics, we calculated normalized KC spectra for each position within the KC plane, visualizing interactive master amplitudes alongside individual amplitudes on overlapping two-dimensional planes. We further computed the relative change in complexities (RCC) of the normalized master and individual components within the KC plane, ranging from 0 to 1 in defined intervals. Based on these results, we analyzed and discussed the complexity patterns of U.S. rivers corresponding to each interval of normalized amplitudes. Full article
Show Figures

Figure 1

9 pages, 2747 KB  
Article
Whole-Lesion CT Texture Analysis as a Quantitative Biomarker for the Identification of Homogeneous Renal Tumors
by Xiaoyan Meng, Shichao Li, Cui Feng, Daoyu Hu, Zhen Li and Yonghua Niu
Life 2022, 12(12), 2148; https://doi.org/10.3390/life12122148 - 19 Dec 2022
Cited by 1 | Viewed by 1930
Abstract
Renal tumors are very common in the urinary system, and the preoperative differential diagnosis of homogeneous renal tumors remains a challenge. This study aimed to evaluate the feasibility of the whole-lesion CT texture analysis for the identification of homogeneous renal tumors including clear [...] Read more.
Renal tumors are very common in the urinary system, and the preoperative differential diagnosis of homogeneous renal tumors remains a challenge. This study aimed to evaluate the feasibility of the whole-lesion CT texture analysis for the identification of homogeneous renal tumors including clear cell renal cell carcinoma (ccRCC), chromophobe RCC (chRCC), and renal oncocytoma (RO). This retrospective study was approved by our local IRB. Contrast-enhanced CT examination was performed in 128 patients and histopathologically confirmed ccRCC, chRCC, and RO. The one-way ANOVA test with Bonferroni corrections was used to compare the differences, and the receiver operating characteristic (ROC) curve analysis was applied to determine the diagnostic efficiency. The whole-lesion CT histogram analysis was used to demonstrate significant differences between ccRCC and chRCC in both arterial and venous phases, and the entropy demonstrated excellent performance in discriminating these two types of tumors (AUCs = 0.95, 0.91). The inhomogeneity of ccRCC was significantly higher than that of RO both in arterial and venous phases. The entropy of chRCC was significantly lower than that of RO, and the kurtosis and entropy yielded high sensitivity (91%) and moderate specificity (74%) in the arterial phase. The whole-lesion CT histogram analysis could be useful for the differential diagnosis of homogeneous ccRCC, chRCC, and RO. Full article
(This article belongs to the Section Radiobiology and Nuclear Medicine)
Show Figures

Figure 1

18 pages, 27909 KB  
Article
Development and Evaluation of a Novel Deep-Learning-Based Framework for the Classification of Renal Histopathology Images
by Yasmine Abu Haeyeh, Mohammed Ghazal, Ayman El-Baz and Iman M. Talaat
Bioengineering 2022, 9(9), 423; https://doi.org/10.3390/bioengineering9090423 - 30 Aug 2022
Cited by 23 | Viewed by 6442
Abstract
Kidney cancer has several types, with renal cell carcinoma (RCC) being the most prevalent and severe type, accounting for more than 85% of adult patients. The manual analysis of whole slide images (WSI) of renal tissues is the primary tool for RCC diagnosis [...] Read more.
Kidney cancer has several types, with renal cell carcinoma (RCC) being the most prevalent and severe type, accounting for more than 85% of adult patients. The manual analysis of whole slide images (WSI) of renal tissues is the primary tool for RCC diagnosis and prognosis. However, the manual identification of RCC is time-consuming and prone to inter-subject variability. In this paper, we aim to distinguish between benign tissue and malignant RCC tumors and identify the tumor subtypes to support medical therapy management. We propose a novel multiscale weakly-supervised deep learning approach for RCC subtyping. Our system starts by applying the RGB-histogram specification stain normalization on the whole slide images to eliminate the effect of the color variations on the system performance. Then, we follow the multiple instance learning approach by dividing the input data into multiple overlapping patches to maintain the tissue connectivity. Finally, we train three multiscale convolutional neural networks (CNNs) and apply decision fusion to their predicted results to obtain the final classification decision. Our dataset comprises four classes of renal tissues: non-RCC renal parenchyma, non-RCC fat tissues, clear cell RCC (ccRCC), and clear cell papillary RCC (ccpRCC). The developed system demonstrates a high classification accuracy and sensitivity on the RCC biopsy samples at the slide level. Following a leave-one-subject-out cross-validation approach, the developed RCC subtype classification system achieves an overall classification accuracy of 93.0% ± 4.9%, a sensitivity of 91.3% ± 10.7%, and a high classification specificity of 95.6% ± 5.2%, in distinguishing ccRCC from ccpRCC or non-RCC tissues. Furthermore, our method outperformed the state-of-the-art Resnet-50 model. Full article
(This article belongs to the Special Issue Machine Learning for Biomedical Applications)
Show Figures

Figure 1

19 pages, 6723 KB  
Article
Integrative Radiogenomics Approach for Risk Assessment of Post-Operative Metastasis in Pathological T1 Renal Cell Carcinoma: A Pilot Retrospective Cohort Study
by Hye Won Lee, Hwan-ho Cho, Je-Gun Joung, Hwang Gyun Jeon, Byong Chang Jeong, Seong Soo Jeon, Hyun Moo Lee, Do-Hyun Nam, Woong-Yang Park, Chan Kyo Kim, Seong Il Seo and Hyunjin Park
Cancers 2020, 12(4), 866; https://doi.org/10.3390/cancers12040866 - 2 Apr 2020
Cited by 22 | Viewed by 4759
Abstract
Despite the increasing incidence of pathological stage T1 renal cell carcinoma (pT1 RCC), postoperative distant metastases develop in many surgically treated patients, causing death in certain cases. Therefore, this study aimed to create a radiomics model using imaging features from multiphase computed tomography [...] Read more.
Despite the increasing incidence of pathological stage T1 renal cell carcinoma (pT1 RCC), postoperative distant metastases develop in many surgically treated patients, causing death in certain cases. Therefore, this study aimed to create a radiomics model using imaging features from multiphase computed tomography (CT) to more accurately predict the postoperative metastasis of pT1 RCC and further investigate the possible link between radiomics parameters and gene expression profiles generated by whole transcriptome sequencing (WTS). Four radiomic features, including the minimum value of a histogram feature from inner regions of interest (ROIs) (INNER_Min_hist), the histogram of the energy feature from outer ROIs (OUTER_Energy_Hist), the maximum probability of gray-level co-occurrence matrix (GLCM) feature from inner ROIs (INNER_MaxProb_GLCM), and the ratio of voxels under 80 Hounsfield units (Hus) in the nephrographic phase of postcontrast CT (Under80HURatio), were detected to predict the postsurgical metastasis of patients with pathological stage T1 RCC, and the clinical outcomes of patients could be successfully stratified based on their radiomic risk scores. Furthermore, we identified heterogenous-trait-associated gene signatures correlated with these four radiomic features, which captured clinically relevant molecular pathways, tumor immune microenvironment, and potential treatment strategies. Our results of accurate surrogates using radiogenomics could lead to additional benefit from adjuvant therapy or postsurgical metastases in pT1 RCC. Full article
Show Figures

Figure 1

Back to TopTop