Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = high-altitude airship (HAA)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 2398 KiB  
Article
Layout Analysis and Optimization of Airships with Thrust-Based Stability Augmentation
by Carlo E. D. Riboldi and Alberto Rolando
Aerospace 2022, 9(7), 393; https://doi.org/10.3390/aerospace9070393 - 21 Jul 2022
Cited by 10 | Viewed by 2971
Abstract
Despite offering often significant advantages with respect to other flying machines, especially in terms of flight endurance, airships are typically harder to control. Technological solutions borrowed from the realm of shipbuilding, such as bow thrusters, have been largely experimented with to the extent [...] Read more.
Despite offering often significant advantages with respect to other flying machines, especially in terms of flight endurance, airships are typically harder to control. Technological solutions borrowed from the realm of shipbuilding, such as bow thrusters, have been largely experimented with to the extent of increasing maneuverability. More recently, also thrust vectoring has appeared as an effective solution to ameliorate maneuverability. However, with an increasing interest for high-altitude airships (HAAs) and autonomous flight and the ensuing need to reduce weight and lifting performance, design simplicity is a desirable goal. Besides saving weight, it would reduce complexity and increase time between overhauls, in turn enabling longer missions. In this perspective, an airship layout based on a set of non-tilting thrusters, optimally placed to be employed for both propulsion and attitude control, appears particularly interesting. If sufficiently effective, such configurations would reduce the need for control surfaces on aerodynamic empennages and the corresponding actuators. Clearly, from an airship design perspective, the adoption of many smaller thrusters instead of a few larger ones allows a potentially significant departure from more classical airship layouts. Where on one side attractive, this solution unlocks a number of design variables—for instance, the number of thrusters, as well as their positioning in the general layout, mutual tilt angles, etc.—to be set according simultaneously to propulsion and attitude control goals. In this paper, we explore the effect of a set of configuration parameters defining three-thrusters and four-thrusters layout, trying to capture their impact on an aggregated measure of control performance. To this aim, at first a stability augmentation system (SAS) is designed so as to stabilize the airship making use of thrusters instead of aerodynamic surfaces. Then a non-linear model of the airship is employed to test the airship in a set of virtual simulation scenarios. The analysis is carried out in a parameterized fashion, changing the values of configuration parameters pertaining to the thrusters layout so as to understand their respective effects. In a later stage, the choice of the optimal design values (i.e., the optimal layout) related to the thrusters is demanded to an optimizer. The paper is concluded by showing the results on a complete numerical test case, drawing conclusions on the relevance of certain design parameters on the considered performance, and commenting the features of an optimal configuration. Full article
(This article belongs to the Special Issue Mission Analysis and Design of Lighter-than-Air Flying Vehicles)
Show Figures

Figure 1

37 pages, 2505 KiB  
Article
On the Feasibility of a Launcher-Deployable High-Altitude Airship: Effects of Design Constraints in an Optimal Sizing Framework
by Carlo E.D. Riboldi, Alberto Rolando and Gregory Regazzoni
Aerospace 2022, 9(4), 210; https://doi.org/10.3390/aerospace9040210 - 11 Apr 2022
Cited by 8 | Viewed by 4179
Abstract
When ground observation or signal relaying in the vicinity of an unfriendly operative scenario are of interest, such as for military actions or disaster relief, high-altitude airships (HAA) offer some technical benefits. Featuring a milder cost and higher deployment flexibility with respect to [...] Read more.
When ground observation or signal relaying in the vicinity of an unfriendly operative scenario are of interest, such as for military actions or disaster relief, high-altitude airships (HAA) offer some technical benefits. Featuring a milder cost and higher deployment flexibility with respect to lower-Earth orbit satellites, these platforms, often baptized as high-altitude pseudo-satellites (HAPS), operate sufficiently far from the ground to provide better imaging coverage and farther-reaching signal relaying than standard low-flying systems, such as aircraft or helicopters. Despite the atmospheric conditions in the higher atmosphere, they offer stable airstreams and highly-predictable solar energy density, thus ideally giving the chance of smooth operation for a prolonged period of time. The design of airships for the task is often conditioned by the need to go through the lower layers of the atmosphere, featuring less predictable and often unstable aerodynamics, during the climb to the target altitude. With the aim of simultaneously largely increasing the ease and quickness of platform deployment, removing most of the design constraints for the HAPS induced by the crossing of the lower atmosphere, and thus allowing for the design of a machine best suited to matching optimal performance at altitude, the deployment of the HAA by means of a missile is an interesting concept. However, since the HAA platform should take the role of a launcher payload, the feasibility of the mission is subject to a careful negotiation of specification, such that the ensuing overall weight of the airship is as low as possible. A preliminary design technique for high-altitude airships is therefore introduced initially, customized to some features typical to missile-assisted deployment, but with the potential for broader applications. The proposed procedure bends itself to the inclusion in an optimal framework, with the aim of seeking a design solution automatically. A validation of the adopted models and assumptions on existing HAPS is proposed first. The design of the airship is then carried out in a parameterized fashion, highlighting the impact of operative and technological constraints on the resulting sizing solutions. This allows for the marking of the boundaries of the space of design solutions for a launcher-deployable airship. Full article
(This article belongs to the Special Issue Mission Analysis and Design of Lighter-than-Air Flying Vehicles)
Show Figures

Figure 1

20 pages, 14311 KiB  
Article
An Observation Scheduling Approach Based on Task Clustering for High-Altitude Airship
by Jiawei Chen, Qizhang Luo and Guohua Wu
Sensors 2022, 22(5), 2050; https://doi.org/10.3390/s22052050 - 6 Mar 2022
Cited by 1 | Viewed by 2657
Abstract
Airship-based Earth observation is of great significance in many fields such as disaster rescue and environment monitoring. To facilitate efficient observation of high-altitude airships (HAA), a high-quality observation scheduling approach is crucial. This paper considers the scheduling of the imaging sensor and proposes [...] Read more.
Airship-based Earth observation is of great significance in many fields such as disaster rescue and environment monitoring. To facilitate efficient observation of high-altitude airships (HAA), a high-quality observation scheduling approach is crucial. This paper considers the scheduling of the imaging sensor and proposes a hierarchical observation scheduling approach based on task clustering (SA-TC). The original observation scheduling problem of HAA is transformed into three sub-problems (i.e., task clustering, sensor scheduling, and cruise path planning) and these sub-problems are respectively solved by three stages of the proposed SA-TC. Specifically, a novel heuristic algorithm integrating an improved ant colony optimization and the backtracking strategy is proposed to address the task clustering problem. The 2-opt local search is embedded into a heuristic algorithm to solve the sensor scheduling problem and the improved ant colony optimization is also implemented to solve the cruise path planning problem. Finally, extensive simulation experiments are conducted to verify the superiority of the proposed approach. Besides, the performance of the three algorithms for solving the three sub-problems are further analyzed on instances with different scales. Full article
(This article belongs to the Special Issue Parallel and Distributed Computing in Wireless Sensor Networks)
Show Figures

Figure 1

15 pages, 6008 KiB  
Article
Toward High Altitude Airship Ground-Based Boresight Calibration of Hyperspectral Pushbroom Imaging Sensors
by Aiwu Zhang, Shaoxing Hu, Xiangang Meng, Lingbo Yang and Hanlun Li
Remote Sens. 2015, 7(12), 17297-17311; https://doi.org/10.3390/rs71215883 - 19 Dec 2015
Cited by 18 | Viewed by 6388
Abstract
The complexity of the single linear hyperspectral pushbroom imaging based on a high altitude airship (HAA) without a three-axis stabilized platform is much more than that based on the spaceborne and airborne. Due to the effects of air pressure, temperature and airflow, the [...] Read more.
The complexity of the single linear hyperspectral pushbroom imaging based on a high altitude airship (HAA) without a three-axis stabilized platform is much more than that based on the spaceborne and airborne. Due to the effects of air pressure, temperature and airflow, the large pitch and roll angles tend to appear frequently that create pushbroom images highly characterized with severe geometric distortions. Thus, the in-flight calibration procedure is not appropriate to apply to the single linear pushbroom sensors on HAA having no three-axis stabilized platform. In order to address this problem, a new ground-based boresight calibration method is proposed. Firstly, a coordinate’s transformation model is developed for direct georeferencing (DG) of the linear imaging sensor, and then the linear error equation is derived from it by using the Taylor expansion formula. Secondly, the boresight misalignments are worked out by using iterative least squares method with few ground control points (GCPs) and ground-based side-scanning experiments. The proposed method is demonstrated by three sets of experiments: (i) the stability and reliability of the method is verified through simulation-based experiments; (ii) the boresight calibration is performed using ground-based experiments; and (iii) the validation is done by applying on the orthorectification of the real hyperspectral pushbroom images from a HAA Earth observation payload system developed by our research team—“LanTianHao”. The test results show that the proposed boresight calibration approach significantly improves the quality of georeferencing by reducing the geometric distortions caused by boresight misalignments to the minimum level. Full article
Show Figures

Graphical abstract

Back to TopTop