Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = hidrosmin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3759 KiB  
Article
The Synthetic Flavonoid Hidrosmin Improves Endothelial Dysfunction and Atherosclerotic Lesions in Diabetic Mice
by Luna Jiménez-Castilla, Lucas Opazo-Ríos, Gema Marin-Royo, Macarena Orejudo, Raquel Rodrigues-Diez, Constanza Ballesteros-Martínez, Manuel Soto-Catalán, Teresa Caro-Ordieres, Inés Artaiz, Tatiana Suarez-Cortés, Arturo Zazpe, Gonzalo Hernández, Marcelino Cortés, José Tuñón, Ana M. Briones, Jesús Egido and Carmen Gómez-Guerrero
Antioxidants 2022, 11(12), 2499; https://doi.org/10.3390/antiox11122499 - 19 Dec 2022
Cited by 3 | Viewed by 3324
Abstract
In diabetes, chronic hyperglycemia, dyslipidemia, inflammation and oxidative stress contribute to the progression of macro/microvascular complications. Recently, benefits of the use of flavonoids in these conditions have been established. This study investigates, in two different mouse models of diabetes, the vasculoprotective effects of [...] Read more.
In diabetes, chronic hyperglycemia, dyslipidemia, inflammation and oxidative stress contribute to the progression of macro/microvascular complications. Recently, benefits of the use of flavonoids in these conditions have been established. This study investigates, in two different mouse models of diabetes, the vasculoprotective effects of the synthetic flavonoid hidrosmin on endothelial dysfunction and atherogenesis. In a type 2 diabetes model of leptin-receptor-deficient (db/db) mice, orally administered hidrosmin (600 mg/kg/day) for 16 weeks markedly improved vascular function in aorta and mesenteric arteries without affecting vascular structural properties, as assessed by wire and pressure myography. In streptozotocin-induced type 1 diabetic apolipoprotein E-deficient mice, hidrosmin treatment for 7 weeks reduced atherosclerotic plaque size and lipid content; increased markers of plaque stability; and decreased markers of inflammation, senescence and oxidative stress in aorta. Hidrosmin showed cardiovascular safety, as neither functional nor structural abnormalities were noted in diabetic hearts. Ex vivo, hidrosmin induced vascular relaxation that was blocked by nitric oxide synthase (NOS) inhibition. In vitro, hidrosmin stimulated endothelial NOS activity and NO production and downregulated hyperglycemia-induced inflammatory and oxidant genes in vascular smooth muscle cells. Our results highlight hidrosmin as a potential add-on therapy in the treatment of macrovascular complications of diabetes. Full article
(This article belongs to the Special Issue Flavonoids and Chronic Diseases)
Show Figures

Figure 1

13 pages, 2854 KiB  
Article
Flavonoids: Antiplatelet Effect as Inhibitors of COX-1
by Cristina Zaragozá, Miguel Ángel Álvarez-Mon, Francisco Zaragozá and Lucinda Villaescusa
Molecules 2022, 27(3), 1146; https://doi.org/10.3390/molecules27031146 - 8 Feb 2022
Cited by 27 | Viewed by 3950
Abstract
Flavonoids are compounds with a benzopyranic structure that exhibits multiple pharmacological activities. They are known for their venotonic activity, but their mechanism of action remains unclear. It is thought that, as this mechanism is mediated by prostaglandins, these compounds may interfere with the [...] Read more.
Flavonoids are compounds with a benzopyranic structure that exhibits multiple pharmacological activities. They are known for their venotonic activity, but their mechanism of action remains unclear. It is thought that, as this mechanism is mediated by prostaglandins, these compounds may interfere with the arachidonic acid (AA) cascade. These assays are designed to measure the antiplatelet aggregation capacity of quercetin, rutin, diosmetin, diosmin, and hidrosmin, as well as to evaluate a potential structure−activity ratio. In this paper, several studies on platelet aggregation at different concentrations (from 0.33 mM to 1.5 mM) of different flavone compounds are conducted, measuring platelet aggregation by impedance aggregometry, and the cyclooxygenase (COX) activity by metabolites generated, including the activity of the pure recombinant enzyme in the presence of these polyphenols. The results obtained showed that quercetin and diosmetin aglycones have a greater antiplatelet effect and inhibit the COX enzyme activity to a greater extent than their heterosides; however, the fact that greater inhibition of the pure recombinant enzyme was achieved by heterosides suggests that these compounds may have difficulty in crossing biological membranes. In any case, in view of the results obtained, it can be concluded that flavonoids could be useful as coadjuvants in the treatment of cardiovascular pathologies. Full article
(This article belongs to the Special Issue Flavonoids and Their Disease Prevention and Treatment Potential 2021)
Show Figures

Figure 1

17 pages, 3089 KiB  
Article
Nephroprotective Effects of Synthetic Flavonoid Hidrosmin in Experimental Diabetic Nephropathy
by Luna Jiménez-Castilla, Gema Marín-Royo, Macarena Orejudo, Lucas Opazo-Ríos, Teresa Caro-Ordieres, Inés Artaiz, Tatiana Suárez-Cortés, Arturo Zazpe, Gonzalo Hernández, Carmen Gómez-Guerrero and Jesús Egido
Antioxidants 2021, 10(12), 1920; https://doi.org/10.3390/antiox10121920 - 29 Nov 2021
Cited by 6 | Viewed by 3419
Abstract
Diabetes mellitus (DM) is a high-impact disease commonly characterized by hyperglycemia, inflammation, and oxidative stress. Diabetic nephropathy (DN) is a common diabetic microvascular complication and the leading cause of chronic kidney disease worldwide. This study investigates the protective effects of the synthetic flavonoid [...] Read more.
Diabetes mellitus (DM) is a high-impact disease commonly characterized by hyperglycemia, inflammation, and oxidative stress. Diabetic nephropathy (DN) is a common diabetic microvascular complication and the leading cause of chronic kidney disease worldwide. This study investigates the protective effects of the synthetic flavonoid hidrosmin (5-O-(beta-hydroxyethyl) diosmin) in experimental DN induced by streptozotocin injection in apolipoprotein E deficient mice. Oral administration of hidrosmin (300 mg/kg/day, n = 11) to diabetic mice for 7 weeks markedly reduced albuminuria (albumin-to-creatinine ratio: 47 ± 11% vs. control) and ameliorated renal pathological damage and expression of kidney injury markers. Kidneys of hidrosmin-treated mice exhibited lower content of macrophages and T cells, reduced expression of cytokines and chemokines, and attenuated inflammatory signaling pathways. Hidrosmin treatment improved the redox balance by reducing prooxidant enzymes and enhancing antioxidant genes, and also decreased senescence markers in diabetic kidneys. In vitro, hidrosmin dose-dependently reduced the expression of inflammatory and oxidative genes in tubuloepithelial cells exposed to either high-glucose or cytokines, with no evidence of cytotoxicity at effective concentrations. In conclusion, the synthetic flavonoid hidrosmin exerts a beneficial effect against DN by reducing inflammation, oxidative stress, and senescence pathways. Hidrosmin could have a potential role as a coadjutant therapy for the chronic complications of DM. Full article
Show Figures

Figure 1

Back to TopTop