Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = heterozygous TMPRSS6

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 832 KiB  
Article
IRIDA Phenotype in TMPRSS6 Monoallelic-Affected Patients: Toward a Better Understanding of the Pathophysiology
by Vera Hoving, Scott E. Korman, Petros Antonopoulos, Albertine E. Donker, Saskia E. M. Schols and Dorine W. Swinkels
Genes 2022, 13(8), 1309; https://doi.org/10.3390/genes13081309 - 23 Jul 2022
Cited by 3 | Viewed by 3141
Abstract
Iron-refractory iron deficiency anemia (IRIDA) is an autosomal recessive inherited form of iron deficiency anemia characterized by discrepantly high hepcidin levels relative to body iron status. However, patients with monoallelic exonic TMPRSS6 variants have also been reported to express the IRIDA phenotype. The [...] Read more.
Iron-refractory iron deficiency anemia (IRIDA) is an autosomal recessive inherited form of iron deficiency anemia characterized by discrepantly high hepcidin levels relative to body iron status. However, patients with monoallelic exonic TMPRSS6 variants have also been reported to express the IRIDA phenotype. The pathogenesis of an IRIDA phenotype in these patients is unknown and causes diagnostic uncertainty. Therefore, we retrospectively summarized the data of 16 patients (4 men, 12 women) who expressed the IRIDA phenotype in the presence of only a monoallelic TMPRSS6 variant. Eight unaffected relatives with identical exonic TMPRSS6 variants were used as controls. Haplotype analysis was performed to assess the (intra)genetic differences between patients and relatives. The expression and severity of the IRIDA phenotype were highly variable. Compared with their relatives, patients showed lower Hb, MCV, and TSAT/hepcidin ratios and inherited a different wild-type allele. We conclude that IRIDA in monoallelic TMPRSS6-affected patients is a phenotypically and genotypically heterogeneous disease that is more common in female patients. We hypothesize that allelic imbalance, polygenetic inheritance, or modulating environmental factors and their complex interplay are possible causes. This explorative study is the first step toward improved insights into the pathophysiology and improved diagnostic accuracy for patients presenting with IRIDA and a monoallelic exonic TMPRSS6 variant. Full article
(This article belongs to the Special Issue Genetic Research of Iron Homeostasis and Related Diseases)
Show Figures

Figure 1

23 pages, 3403 KiB  
Hypothesis
COVID-19 and Individual Genetic Susceptibility/Receptivity: Role of ACE1/ACE2 Genes, Immunity, Inflammation and Coagulation. Might the Double X-Chromosome in Females Be Protective against SARS-CoV-2 Compared to the Single X-Chromosome in Males?
by Donato Gemmati, Barbara Bramanti, Maria Luisa Serino, Paola Secchiero, Giorgio Zauli and Veronica Tisato
Int. J. Mol. Sci. 2020, 21(10), 3474; https://doi.org/10.3390/ijms21103474 - 14 May 2020
Cited by 305 | Viewed by 23390
Abstract
In December 2019, a novel severe acute respiratory syndrome (SARS) from a new coronavirus (SARS-CoV-2) was recognized in the city of Wuhan, China. Rapidly, it became an epidemic in China and has now spread throughout the world reaching pandemic proportions. High mortality rates [...] Read more.
In December 2019, a novel severe acute respiratory syndrome (SARS) from a new coronavirus (SARS-CoV-2) was recognized in the city of Wuhan, China. Rapidly, it became an epidemic in China and has now spread throughout the world reaching pandemic proportions. High mortality rates characterize SARS-CoV-2 disease (COVID-19), which mainly affects the elderly, causing unrestrained cytokines-storm and subsequent pulmonary shutdown, also suspected micro thromboembolism events. At the present time, no specific and dedicated treatments, nor approved vaccines, are available, though very promising data come from the use of anti-inflammatory, anti-malaria, and anti-coagulant drugs. In addition, it seems that males are more susceptible to SARS-CoV-2 than females, with males 65% more likely to die from the infection than females. Data from the World Health Organization (WHO) and Chinese scientists show that of all cases about 1.7% of women who contract the virus will die compared with 2.8% of men, and data from Hong Kong hospitals state that 32% of male and 15% of female COVID-19 patients required intensive care or died. On the other hand, the long-term fallout of coronavirus may be worse for women than for men due to social and psychosocial reasons. Regardless of sex- or gender-biased data obtained from WHO and those gathered from sometimes controversial scientific journals, some central points should be considered. Firstly, SARS-CoV-2 has a strong interaction with the human ACE2 receptor, which plays an essential role in cell entry together with transmembrane serine protease 2 (TMPRSS2); it is interesting to note that the ACE2 gene lays on the X-chromosome, thus allowing females to be potentially heterozygous and differently assorted compared to men who are definitely hemizygous. Secondly, the higher ACE2 expression rate in females, though controversial, might ascribe them the worst prognosis, in contrast with worldwide epidemiological data. Finally, several genes involved in inflammation are located on the X-chromosome, which also contains high number of immune-related genes responsible for innate and adaptive immune responses to infection. Other genes, out from the RAS-pathway, might directly or indirectly impact on the ACE1/ACE2 balance by influencing its main actors (e.g., ABO locus, SRY, SOX3, ADAM17). Unexpectedly, the higher levels of ACE2 or ACE1/ACE2 rebalancing might improve the outcome of COVID-19 in both sexes by reducing inflammation, thrombosis, and death. Moreover, X-heterozygous females might also activate a mosaic advantage and show more pronounced sex-related differences resulting in a sex dimorphism, further favoring them in counteracting the progression of the SARS-CoV-2 infection. Full article
(This article belongs to the Special Issue Gender Medicine: Pharmacogenetics and Personalised Medicine)
Show Figures

Figure 1

Back to TopTop