Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline

Search Results (1)

Search Parameters:
Keywords = hesperetin laurate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2970 KiB  
Article
In Vitro Biological Activities of Hesperidin-Related Compounds with Different Solubility
by Hyo-Jun Lee, Sun-Hyung Lee, Sun-Ki Hong, Bog-Im Gil and Kyung-Ae Lee
Antioxidants 2024, 13(6), 727; https://doi.org/10.3390/antiox13060727 - 14 Jun 2024
Cited by 2 | Viewed by 1901
Abstract
The biological activities of hesperidin-related compounds, such as hesperetin laurate (HTL), hesperetin (HT), hesperidin (HD), and hesperidin glucoside (HDG), were investigated in vitro. The compounds showed different hydrophobicities, and the octanol–water partition coefficient log P were 7.28 ± 0.06 for HTL, 2.59 ± [...] Read more.
The biological activities of hesperidin-related compounds, such as hesperetin laurate (HTL), hesperetin (HT), hesperidin (HD), and hesperidin glucoside (HDG), were investigated in vitro. The compounds showed different hydrophobicities, and the octanol–water partition coefficient log P were 7.28 ± 0.06 for HTL, 2.59 ± 0.04 for HT, 2.13 ± 0.03 for HD, and −3.45 ± 0.06 for HDG, respectively. In the DPPH assay and β-carotene bleaching assay to determine antioxidant capacity, all compounds tested showed antioxidant activity in a concentration-dependent manner, although to varying degrees. HTL and HT showed similarly high activities compared to HD or HDG. HD and HDG did not show a significant difference despite the difference in solubility between the two. Cytotoxicity was high; in the order of hydrophobicity—HTL > HT > HD > HDL in keratinocyte HaCaT cells. All compounds tested showed reducing effects on cellular inflammatory mediators and cytokines induced by UV irradiation. However, HTL and HT effectively reduced nitric oxide (NO), tumor necrosis factor α (TNF-α), and interleukin-6 (IL-6) levels compared to HD and HDG. The inhibitory effects of hesperidin-related compounds on skin-resident microorganisms were evaluated by measuring minimum inhibitory concentration (MIC). HTL showed the highest inhibitory effects against Staphylococcus aureus, Cutibacterium acnes, Candida albicans, and Malassezia furfur, followed by HT, while HD and HDF showed little effect. In conclusion, the hydrophobicity of hesperidin-related compounds was estimated to be important for biological activity in vitro, as was the presence or absence of the sugar moiety. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Figure 1

Back to TopTop