Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = hereditary hyperferritinemia cataract syndrome

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1660 KiB  
Case Report
Genotypic–Phenotypic Correlations of Hereditary Hyperferritinemia-Cataract Syndrome: Case Series of Three Brazilian Families
by Olivia A. Zin, Luiza M. Neves, Daniela P. Cunha, Fabiana L. Motta, Bruna N. S. Agonigi, Dafne D. G. Horovitz, Daltro C. Almeida, Jocieli Malacarne, Ana Paula S. Rodrigues, Adriana B. Carvalho, Cinthia A. Rivello, Rita Espariz, Andrea A. Zin, Juliana M. F. Sallum and Zilton F. M. Vasconcelos
Int. J. Mol. Sci. 2023, 24(15), 11876; https://doi.org/10.3390/ijms241511876 - 25 Jul 2023
Cited by 2 | Viewed by 2076
Abstract
Hereditary hyperferritinemia-cataract syndrome (HHCS) is a rare, frequently misdiagnosed, autosomal dominant disease caused by mutations in the FTL gene. It causes bilateral pediatric cataract and hyperferritinemia without iron overload. The objective of this case series, describing three Brazilian families, is to increase awareness [...] Read more.
Hereditary hyperferritinemia-cataract syndrome (HHCS) is a rare, frequently misdiagnosed, autosomal dominant disease caused by mutations in the FTL gene. It causes bilateral pediatric cataract and hyperferritinemia without iron overload. The objective of this case series, describing three Brazilian families, is to increase awareness of HHCS, as well as to discuss possible phenotypic interactions with concurrent mutations in HFE, the gene associated with autosomal recessive inheritance hereditary hemochromatosis. Whole-exome sequencing was performed in eight individuals with HHCS from three different families, as well as one unaffected member from each family for trio analysis—a total of eleven individuals. Ophthalmological and clinical genetic evaluations were conducted. The likely pathogenic variant c.-157G>A in FTL was found in all affected individuals. They presented slowly progressing bilateral cataract symptoms before the age of 14, with a phenotype of varied bilateral diffuse opacities. Hyperferritinemia was present in all affected members, varying from 971 ng/mL to 4899 ng/mL. There were two affected individuals with one concurrent pathogenic variant in HFE (c.187C>G, p.H63D), who were also the ones with the highest values of serum ferritin in our cohort. Few publications describe individuals with pathogenic mutations in both FTL and HFE genes, and further studies are needed to assess possible phenotypic interactions causing higher values of hyperferritinemia. Full article
(This article belongs to the Special Issue Genetics and Epigenetics of Eye Diseases: 2nd Edition)
Show Figures

Figure 1

9 pages, 1504 KiB  
Case Report
Hereditary Hyperferritinemia Cataract Syndrome: Ferritin L Gene and Physiopathology behind the Disease—Report of New Cases
by Ferran Celma Nos, Gonzalo Hernández, Xènia Ferrer-Cortès, Ines Hernandez-Rodriguez, Begoña Navarro-Almenzar, José Luis Fuster, Mar Bermúdez Cortés, Santiago Pérez-Montero, Cristian Tornador and Mayka Sanchez
Int. J. Mol. Sci. 2021, 22(11), 5451; https://doi.org/10.3390/ijms22115451 - 21 May 2021
Cited by 9 | Viewed by 3439
Abstract
Hereditary hyperferritinemia-cataract syndrome (HHCS) is a rare disease characterized by high serum ferritin levels, congenital bilateral cataracts, and the absence of tissue iron overload. This disorder is produced by mutations in the iron responsive element (IRE) located in the 5′ untranslated regions (UTR) [...] Read more.
Hereditary hyperferritinemia-cataract syndrome (HHCS) is a rare disease characterized by high serum ferritin levels, congenital bilateral cataracts, and the absence of tissue iron overload. This disorder is produced by mutations in the iron responsive element (IRE) located in the 5′ untranslated regions (UTR) of the light ferritin (FTL) gene. A canonical IRE is a mRNA structure that interacts with the iron regulatory proteins (IRP1 and IRP2) to post-transcriptionally regulate the expression of proteins related to iron metabolism. Ferritin L and H are the proteins responsible for iron storage and intracellular distribution. Mutations in the FTL IRE abrogate the interaction of FTL mRNA with the IRPs, and de-repress the expression of FTL protein. Subsequently, there is an overproduction of ferritin that accumulates in serum (hyperferritinemia) and excess ferritin precipitates in the lens, producing cataracts. To illustrate this disease, we report two new families affected with hereditary hyperferritinemia-cataract syndrome with previous known mutations. In the diagnosis of congenital bilateral cataracts, HHCS should be taken into consideration and, therefore, it is important to test serum ferritin levels in patients with cataracts. Full article
(This article belongs to the Special Issue Molecular and Genetic Mechanism of Cataracts)
Show Figures

Figure 1

15 pages, 1793 KiB  
Article
L-Ferritin: One Gene, Five Diseases; from Hereditary Hyperferritinemia to Hypoferritinemia—Report of New Cases
by Beatriz Cadenas, Josep Fita-Torró, Mar Bermúdez-Cortés, Inés Hernandez-Rodriguez, José Luis Fuster, María Esther Llinares, Ana María Galera, Julia Lee Romero, Santiago Pérez-Montero, Cristian Tornador and Mayka Sanchez
Pharmaceuticals 2019, 12(1), 17; https://doi.org/10.3390/ph12010017 - 23 Jan 2019
Cited by 23 | Viewed by 10798
Abstract
Ferritin is a multimeric protein composed of light (L-ferritin) and heavy (H-ferritin) subunits that binds and stores iron inside the cell. A variety of mutations have been reported in the L-ferritin subunit gene (FTL gene) that cause the following five diseases: (1) [...] Read more.
Ferritin is a multimeric protein composed of light (L-ferritin) and heavy (H-ferritin) subunits that binds and stores iron inside the cell. A variety of mutations have been reported in the L-ferritin subunit gene (FTL gene) that cause the following five diseases: (1) hereditary hyperferritinemia with cataract syndrome (HHCS), (2) neuroferritinopathy, a subtype of neurodegeneration with brain iron accumulation (NBIA), (3) benign hyperferritinemia, (4) L-ferritin deficiency with autosomal dominant inheritance, and (5) L-ferritin deficiency with autosomal recessive inheritance. Defects in the FTL gene lead to abnormally high levels of serum ferritin (hyperferritinemia) in HHCS and benign hyperferritinemia, while low levels (hypoferritinemia) are present in neuroferritinopathy and in autosomal dominant and recessive L-ferritin deficiency. Iron disturbances as well as neuromuscular and cognitive deficits are present in some, but not all, of these diseases. Here, we identified two novel FTL variants that cause dominant L-ferritin deficiency and HHCS (c.375+2T > A and 36_42delCAACAGT, respectively), and one previously reported variant (Met1Val) that causes dominant L-ferritin deficiency. Globally, genetic changes in the FTL gene are responsible for multiple phenotypes and an accurate diagnosis is useful for appropriate treatment. To help in this goal, we included a diagnostic algorithm for the detection of diseases caused by defects in FTL gene. Full article
(This article belongs to the Special Issue Iron as Therapeutic Targets in Human Diseases)
Show Figures

Figure 1

Back to TopTop