Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = heme misligation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 230 KB  
Review
Early Events, Kinetic Intermediates and the Mechanism of Protein Folding in Cytochrome c
by Robert A. Goldbeck, Eefei Chen and David S. Kliger
Int. J. Mol. Sci. 2009, 10(4), 1476-1499; https://doi.org/10.3390/ijms10041476 - 1 Apr 2009
Cited by 30 | Viewed by 16647 | Correction
Abstract
Kinetic studies of the early events in cytochrome c folding are reviewed with a focus on the evidence for folding intermediates on the submillisecond timescale. Evidence from time-resolved absorption, circular dichroism, magnetic circular dichroism, fluorescence energy and electron transfer, small-angle X-ray scattering and [...] Read more.
Kinetic studies of the early events in cytochrome c folding are reviewed with a focus on the evidence for folding intermediates on the submillisecond timescale. Evidence from time-resolved absorption, circular dichroism, magnetic circular dichroism, fluorescence energy and electron transfer, small-angle X-ray scattering and amide hydrogen exchange studies on the t £ 1 ms timescale reveals a picture of cytochrome c folding that starts with the ~ 1-ms conformational diffusion dynamics of the unfolded chains. A fractional population of the unfolded chains collapses on the 1 – 100 ms timescale to a compact intermediate IC containing some native-like secondary structure. Although the existence and nature of IC as a discrete folding intermediate remains controversial, there is extensive high time-resolution kinetic evidence for the rapid formation of IC as a true intermediate, i.e., a metastable state separated from the unfolded state by a discrete free energy barrier. Final folding to the native state takes place on millisecond and longer timescales, depending on the presence of kinetic traps such as heme misligation and proline mis-isomerization. The high folding rates observed in equilibrium molten globule models suggest that IC may be a productive folding intermediate. Whether it is an obligatory step on the pathway to the high free energy barrier associated with millisecond timescale folding to the native state, however, remains to be determined. Full article
(This article belongs to the Special Issue Protein Folding 2009)
Show Figures

Graphical abstract

Back to TopTop