Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = heath hen

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3073 KB  
Article
Caution Is Needed When Using Niche Models to Infer Changes in Species Abundance: The Case of Two Sympatric Raptor Populations
by Adrián Regos, Luis Tapia, Alberto Gil-Carrera and Jesús Domínguez
Animals 2021, 11(7), 2020; https://doi.org/10.3390/ani11072020 - 6 Jul 2021
Cited by 2 | Viewed by 5060
Abstract
Despite the mounting evidence supporting positive relationships between species abundance and habitat suitability, the capacity of ecological niche models (ENMs) to capture variations in population abundance remains largely unexplored. This study focuses on sympatric populations of hen harrier (Circus cyaneus) and [...] Read more.
Despite the mounting evidence supporting positive relationships between species abundance and habitat suitability, the capacity of ecological niche models (ENMs) to capture variations in population abundance remains largely unexplored. This study focuses on sympatric populations of hen harrier (Circus cyaneus) and Montagu’s harrier (Circus pygargus), surveyed in 1997 and 2017 in an upland moor area in northwestern Spain. The ENMs performed very well for both species (with area under the ROC curve and true skill statistic values of up to 0.9 and 0.75). The presence of both species was mainly correlated with heathlands, although the normalized difference water index derived from Landsat images was the most important for hen harrier, indicating a greater preference of this species for wet heaths and peat bogs. The findings showed that ENM-derived habitat suitability was significantly correlated with the species abundance, thus reinforcing the use of ENMs as a proxy for species abundance. However, the temporal variation in species abundance was not significantly explained by changes in habitat suitability predicted by the ENMs, indicating the need for caution when using these types of models to infer changes in population abundance. Full article
(This article belongs to the Special Issue Birds in Agricultural Environments)
Show Figures

Figure 1

33 pages, 1447 KB  
Review
De-Extinction
by Ben Jacob Novak
Genes 2018, 9(11), 548; https://doi.org/10.3390/genes9110548 - 13 Nov 2018
Cited by 59 | Viewed by 67995
Abstract
De-extinction projects for species such as the woolly mammoth and passenger pigeon have greatly stimulated public and scientific interest, producing a large body of literature and much debate. To date, there has been little consistency in descriptions of de-extinction technologies and purposes. In [...] Read more.
De-extinction projects for species such as the woolly mammoth and passenger pigeon have greatly stimulated public and scientific interest, producing a large body of literature and much debate. To date, there has been little consistency in descriptions of de-extinction technologies and purposes. In 2016, a special committee of the International Union for the Conservation of Nature (IUCN) published a set of guidelines for de-extinction practice, establishing the first detailed description of de-extinction; yet incoherencies in published literature persist. There are even several problems with the IUCN definition. Here I present a comprehensive definition of de-extinction practice and rationale that expounds and reconciles the biological and ecological inconsistencies in the IUCN definition. This new definition brings together the practices of reintroduction and ecological replacement with de-extinction efforts that employ breeding strategies to recover unique extinct phenotypes into a single “de-extinction” discipline. An accurate understanding of de-extinction and biotechnology segregates the restoration of certain species into a new classification of endangerment, removing them from the purview of de-extinction and into the arena of species’ recovery. I term these species as “evolutionarily torpid species”; a term to apply to species falsely considered extinct, which in fact persist in the form of cryopreserved tissues and cultured cells. For the first time in published literature, all currently active de-extinction breeding programs are reviewed and their progress presented. Lastly, I review and scrutinize various topics pertaining to de-extinction in light of the growing body of peer-reviewed literature published since de-extinction breeding programs gained public attention in 2013. Full article
(This article belongs to the Special Issue Conservation Genetics and Genomics)
Show Figures

Figure 1

Back to TopTop