Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = haemanthidine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1576 KiB  
Article
Cytotoxicity and Antiviral Properties of Alkaloids Isolated from Pancratium maritimum
by Marco Masi, Roberta Di Lecce, Natacha Mérindol, Marie-Pierre Girard, Lionel Berthoux, Isabel Desgagné-Penix, Viola Calabrò and Antonio Evidente
Toxins 2022, 14(4), 262; https://doi.org/10.3390/toxins14040262 - 7 Apr 2022
Cited by 19 | Viewed by 5103
Abstract
Ten Amaryllidaceae alkaloids (AAs) were isolated for the first time from Pancratium maritimum collected in Calabria region, Italy. They belong to different subgroups of this family and were identified as lycorine, which is the main alkaloid, 9-O-demethyllycorine, haemanthidine, haemanthamine, 11-hydroxyvittatine, homolycorine, [...] Read more.
Ten Amaryllidaceae alkaloids (AAs) were isolated for the first time from Pancratium maritimum collected in Calabria region, Italy. They belong to different subgroups of this family and were identified as lycorine, which is the main alkaloid, 9-O-demethyllycorine, haemanthidine, haemanthamine, 11-hydroxyvittatine, homolycorine, pancracine, obliquine, tazettine and vittatine. Haemanthidine was isolated as a scalar mixture of two 6-epimers, as already known also for other 6-hydroxycrinine alkaloids, but for the first time they were separated as 6,11-O,O′-di-p-bromobenzoyl esters. The evaluation of the cytotoxic and antiviral potentials of all isolated compounds was undertaken. Lycorine and haemanthidine showed cytotoxic activity on Hacat cells and A431 and AGS cancer cells while, pancracine exhibited selective cytotoxicity against A431 cells. We uncovered that in addition to lycorine and haemanthidine, haemanthamine and pancracine also possess antiretroviral abilities, inhibiting pseudotyped human immunodeficiency virus (HIV)−1 with EC50 of 25.3 µM and 18.5 µM respectively. Strikingly, all the AAs isolated from P. maritimum were able to impede dengue virus (DENV) replication (EC50 ranged from 0.34–73.59 µM) at low to non-cytotoxic concentrations (CC50 ranged from 6.25 µM to >100 µM). Haemanthamine (EC50 = 337 nM), pancracine (EC50 = 357 nM) and haemanthidine (EC50 = 476 nM) were the most potent anti-DENV inhibitors. Thus, this study uncovered new antiviral properties of P. maritimum isolated alkaloids, a significant finding that could lead to the development of new therapeutic strategies to fight viral infectious diseases. Full article
Show Figures

Figure 1

18 pages, 1617 KiB  
Article
Alkaloids Analysis of Habranthus cardenasianus (Amaryllidaceae), Anti-Cholinesterase Activity and Biomass Production by Propagation Strategies
by Daniel Zaragoza-Puchol, Javier E. Ortiz, Alejandro A. Orden, Marianela Sanchez, Jorge Palermo, Alejandro Tapia, Jaume Bastida and Gabriela E. Feresin
Molecules 2021, 26(1), 192; https://doi.org/10.3390/molecules26010192 - 2 Jan 2021
Cited by 8 | Viewed by 3362
Abstract
Plants in the Amaryllidaceae family synthesize a diversity of bioactive alkaloids. Some of these plant species are not abundant and have a low natural multiplication rate. The aims of this work were the alkaloids analysis of a Habranthus cardenasianus bulbs extract, the evaluation [...] Read more.
Plants in the Amaryllidaceae family synthesize a diversity of bioactive alkaloids. Some of these plant species are not abundant and have a low natural multiplication rate. The aims of this work were the alkaloids analysis of a Habranthus cardenasianus bulbs extract, the evaluation of its inhibitory activity against cholinesterases, and to test several propagation strategies for biomass production. Eleven compounds were characterized by GC-MS in the alkaloid extract, which showed a relatively high proportion of tazettine. The known alkaloids tazettine, haemanthamine, and the epimer mixture haemanthidine/6-epi-haemanthidine were isolated and identified by spectroscopic methods. Inhibitory cholinesterases activity was not detected. Three forms of propagation were performed: bulb propagation from seed, cut-induced bulb division, and micropropagated bulbs. Finally, different imbibition and post-collection times were evaluated in seed germination assays. The best propagation method was cut-induced bulb division with longitudinal cuts into quarters (T1) while the best conditions for seed germination were 0-day of post-collection and two days of imbibition. The alkaloids analyses of the H. cardenasianus bulbs showed that they are a source of anti-tumoral alkaloids, especially pretazettine (tazettine) and T1 is a sustainable strategy for its propagation and domestication to produce bioactive alkaloids. Full article
(This article belongs to the Special Issue Amaryllidaceae Alkaloids)
Show Figures

Graphical abstract

8 pages, 795 KiB  
Communication
Novel Topologically Complex Scaffold Derived from Alkaloid Haemanthamine
by Karthik Govindaraju, Marco Masi, Margaux Colin, Veronique Mathieu, Antonio Evidente, Todd W. Hudnall and Alexander Kornienko
Molecules 2018, 23(2), 255; https://doi.org/10.3390/molecules23020255 - 28 Jan 2018
Cited by 13 | Viewed by 4718
Abstract
The generation of natural product-like compound collections has become an important area of research due to low hit rates found with synthetic high-throughput libraries. One method of generating compounds occupying the areas of chemical space not accessible to synthetic planar heterocyclic structures is [...] Read more.
The generation of natural product-like compound collections has become an important area of research due to low hit rates found with synthetic high-throughput libraries. One method of generating compounds occupying the areas of chemical space not accessible to synthetic planar heterocyclic structures is the utilization of natural products as starting materials. In the current work, using a ring-closing iodoalkoxylation reaction, alkaloid haemanthamine was transformed into a unique structural framework possessing an intricate ring system and a large number of stereocenters. The structure of the new compound was confirmed with an X-ray analysis. A small number of derivatives of this new compound were synthesized as a demonstration of the possibility of generating a large natural product-like compound collection based on the new structural framework. Full article
(This article belongs to the Special Issue Structure-Activity Relationship of Natural Products 2018)
Show Figures

Graphical abstract

Back to TopTop