Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = gully-type debris flow sliding slope body

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3956 KB  
Article
Identification of Gully-Type Debris Flow Shapes Based on Point Cloud Local Curvature Extrema
by Ruoyu Tan and Bohan Zhang
Water 2025, 17(9), 1243; https://doi.org/10.3390/w17091243 - 22 Apr 2025
Cited by 1 | Viewed by 831
Abstract
The identification of gully-type debris flow remains a challenging task due to the irregularity of terrain, which causes significant fluctuations in local curvature and hinders accurate feature extraction using traditional methods. To address this issue, this study proposes a novel identification approach based [...] Read more.
The identification of gully-type debris flow remains a challenging task due to the irregularity of terrain, which causes significant fluctuations in local curvature and hinders accurate feature extraction using traditional methods. To address this issue, this study proposes a novel identification approach based on point cloud local curvature extrema. The methodology involves collecting image data of debris flow and landslide areas using DJI Matrice 300 RTK (M300RTK), planning control points and flight routes, and generating three-dimensional point cloud data through image matching and point cloud reconstruction techniques. A quadratic surface fitting method was employed to calculate the curvature of each point in the point cloud, while a topological k-neighborhood algorithm was introduced to establish spatial relationships and extract extreme curvature features. These features were subsequently used as inputs to a convolutional neural network (CNN) for landslide identification. Experimental results demonstrated that the CNN architecture used in this method achieved rapid convergence, with the loss value decreasing to 0.0032 (cross-entropy loss) during training, verifying the model’s effectiveness. The introduction of early stopping and learning rate decay strategies effectively prevented overfitting. Receiver-operating characteristic (ROC) curve analysis revealed that the proposed method achieved an area under the ROC curve (AUC) of 0.92, significantly outperforming comparative methods (0.78–0.85). Full article
Show Figures

Figure 1

Back to TopTop