Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = ground-state structure of Eu-doped germanium clusters

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5194 KiB  
Article
Structural, Electronic, and Nonlinear Optical Characteristics of Europium-Doped Germanium Anion Nanocluster EuGen (n = 7–20): A Theoretical Investigation
by Chenliang Hao, Xueyan Dong, Chunli Li, Caixia Dong, Zhaofeng Yang and Jucai Yang
Molecules 2025, 30(6), 1377; https://doi.org/10.3390/molecules30061377 - 19 Mar 2025
Cited by 2 | Viewed by 605
Abstract
Doping rare-earth metals into semiconductor germanium clusters can significantly enhance the stability of these clusters while introducing novel and noteworthy optical properties. Herein, a series of EuGen (n = 7–20) clusters and their structural and nonlinear optical properties are investigated [...] Read more.
Doping rare-earth metals into semiconductor germanium clusters can significantly enhance the stability of these clusters while introducing novel and noteworthy optical properties. Herein, a series of EuGen (n = 7–20) clusters and their structural and nonlinear optical properties are investigated via the ABCluster global search technique combined with the double-hybrid density functional theory mPW2PLYP. The structure growth pattern can be divided into two stages: an adsorption structure and a linked structure (when n = 7–10 and n = 11–20, respectively). In addition to simulating the photoelectron spectra of the clusters, their various properties, including their (hyper)polarizability, magnetism, charge transfer, relative stability, and energy gap, are identified. According to our examination, the EuGe13 cluster exhibits a significant nonlinear optical response of the βtot value of 7.47 × 105 a.u., and is thus considered a promising candidate for outstanding nonlinear optical semiconductor nanomaterials. Full article
Show Figures

Figure 1

Back to TopTop