Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = groove shape: intermetallic compounds

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3086 KiB  
Article
Laser-MIG Hybrid Welding–Brazing Characteristics of Ti/Al Butt Joints with Different Groove Shapes
by Xin Zhao, Zhibin Yang, Yonghao Huang, Taixu Qu, Rui Cheng and Haiting Lv
Metals 2025, 15(6), 625; https://doi.org/10.3390/met15060625 - 31 May 2025
Viewed by 372
Abstract
TC4 titanium alloy and 5083 aluminum alloy with different groove shapes were joined by laser-MIG hybrid welding–brazing using ER4043 filler wire. The effects of groove shape on the weld formation, intermetallic compounds and tensile property of the Ti/Al butt joints were investigated. The [...] Read more.
TC4 titanium alloy and 5083 aluminum alloy with different groove shapes were joined by laser-MIG hybrid welding–brazing using ER4043 filler wire. The effects of groove shape on the weld formation, intermetallic compounds and tensile property of the Ti/Al butt joints were investigated. The welds without obvious defects could be obtained with grooves of I-shape and V-shape on Ti side, while welds quality with grooves of V-shape on Al side and V-shape on both sides were slightly worse. The interfacial intermetallic compounds (IMCs) on the brazing interface were homogeneous in the joints with groove of V-shape on Ti side, and V-shape on both sides, which had similar thickness and were both composed of TiAl3. Unlike the IMCs mainly composed of TiAl3 at the I-shape groove interface, TiAl3, TiAl, and Ti3Al constituted the IMCs at the V-shape on Al side interface. The average tensile strength of Ti/Al joints with groove of I-shape was the highest at 238 MPa, and was lowest at 140 MPa with groove of V-shape on Al side. The tensile samples mainly fractured at IMCs interface and the fractured surfaces all exhibited mixed brittle–ductile fracture mode. Based on the above research results, I-shape groove was recommended for laser-arc hybrid welding–brazing of 4 mm thick Ti/Al dissimilar butt joints. Full article
(This article belongs to the Special Issue Advances in Laser Processing of Metals and Alloys)
Show Figures

Figure 1

16 pages, 15374 KiB  
Article
The Microstructure and Mechanical Properties of Dual-Spot Laser Welded-Brazed Ti/Al Butt Joints with Different Groove Shapes
by Peng Li, Zhenglong Lei, Xinrui Zhang, Enze Cai and Yanbin Chen
Materials 2020, 13(22), 5105; https://doi.org/10.3390/ma13225105 - 12 Nov 2020
Cited by 9 | Viewed by 2509
Abstract
Laser welding-brazing was performed to join Ti and Al together. The dual-spot laser beam mode was selected as the heat source in this study. Ti-6Al-4V and 6061-T6 Al alloys were selected as the experimental materials. Al-12Si welding wire was selected as the filler [...] Read more.
Laser welding-brazing was performed to join Ti and Al together. The dual-spot laser beam mode was selected as the heat source in this study. Ti-6Al-4V and 6061-T6 Al alloys were selected as the experimental materials. Al-12Si welding wire was selected as the filler material. The effect of groove shape on the weld appearance, microstructure, temperature field, and mechanical performance of Ti/Al welded-brazed butt joints was investigated. The interfacial intermetallic compound (IMC) layer at the Ti/Weld brazing interface was inhomogeneous in joints with I-shaped and Y-shaped grooves. In Ti/Al joints with V-shaped grooves, the homogeneity of temperature field and IMC layer was improved, and the maximum thickness difference of IMC layer was only 0.20 μm. Nano-sized granular Ti7Al5Si12, Ti5Si3, and Ti(Al,Si)3 constituted the IMCs. The tensile strength of Ti/Al joints with V-shaped grooves was the highest at 187 MPa. The fracture mode transformed from brittle fractures located in the IMC layer to ductile fractures located in the Al base metal, which could be attributed to the improvement of the IMC layer at the brazing interface. Full article
(This article belongs to the Collection Welding and Joining Processes of Materials)
Show Figures

Graphical abstract

Back to TopTop