Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = griffinite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 3079 KiB  
Article
Griffinite, Al2TiO5: A New Oxide Mineral from Inclusions in Corundum Xenocrysts from the Mount Carmel Area, Israel
by Chi Ma, Fernando Cámara, Vered Toledo and Luca Bindi
Crystals 2023, 13(10), 1427; https://doi.org/10.3390/cryst13101427 - 26 Sep 2023
Cited by 2 | Viewed by 1764
Abstract
Griffinite (IMA 2021-110), ideally Al2TiO5, is a new mineral from inclusions in corundum xenocrysts from the Mount Carmel area, Israel. It occurs as subhedral crystals, ~1–4 μm in size, together with Zr-rich rutile within a corundum grain. In this [...] Read more.
Griffinite (IMA 2021-110), ideally Al2TiO5, is a new mineral from inclusions in corundum xenocrysts from the Mount Carmel area, Israel. It occurs as subhedral crystals, ~1–4 μm in size, together with Zr-rich rutile within a corundum grain. In this study, a mean of eight electron probe microanalyses gave TiO2 44.41 (24), Al2O3 55.13 (18), FeO 0.47 (5), and MgO 0.37 (2), totaling 100.38 wt%, which corresponded, on the basis of a total of five oxygen atoms, to (Al1.97Mg0.02Fe0.01)Ti1.01O5. Electron back-scatter diffraction studies revealed that griffinite is orthorhombic and in the space group Cmcm, with a = 3.58 (2) Å, b = 9.44 (1) Å, c = 9.65 (1) Å, and V = 326 (2) Å3 with Z = 4. The six strongest calculated powder diffraction lines [d in Å (I/I0) (hkl)] are 3.347 (100) (110); 2.658 (90) (023); 4.720 (77) (020); 1.903 (57) (043); 1.790 (55) (200); and 1.688 (44) (134). In the crystal structure, Al3+ and Ti4+ are disordered into two distinct distorted octahedra, which form edge-sharing double chains. Griffinite is a high-temperature oxide mineral, formed in melt pockets in corundum-aggregate xenoliths derived from the upper mantle beneath Mount Carmel, Israel. The new mineral is named after William L. Griffin, a geologist at Macquarie University, Australia. Full article
(This article belongs to the Special Issue The Progress of In-Situ Study of Mineralogy and Gemmology)
Show Figures

Figure 1

Back to TopTop