Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = graphic convolving

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1932 KB  
Article
Key News Event Detection and Event Context Using Graphic Convolution, Clustering, and Summarizing Methods
by Zheng Liu, Yu Zhang, Yimeng Li and Chaomurilige
Appl. Sci. 2023, 13(9), 5510; https://doi.org/10.3390/app13095510 - 28 Apr 2023
Cited by 6 | Viewed by 4474
Abstract
The detection of key events and identification of the events’ context have been widely studied to detect key events from large volumes of online news and identify trends in such events. In this paper, we propose a Key News Event Detection and Context [...] Read more.
The detection of key events and identification of the events’ context have been widely studied to detect key events from large volumes of online news and identify trends in such events. In this paper, we propose a Key News Event Detection and Context Method based on graphic convolving, clustering, and summarizing methods. Our method has three main contributions: (1) We propose the use of position vectors as time-embedding feature representations and concatenate semantic and time-embedding features as node features of the graph to distinguish different nodes of the graph. Additionally, a temporal nonlinear function was constructed using time embedding to objectively describe the effect of time on the degree of association between nodes. (2) We update the graph nodes using a graph convolutional neural network to extract deep semantic information about individual nodes of a high-quality phrase graph, thereby improving the clustering capability of graph-based key event detection. (3) We apply a summary generation algorithm to a subset of news data for each key event. Lastly, we validated the effectiveness of our proposed method by applying it to the 2014 Ebola dataset. The experimental results indicate that our proposed method can effectively detect key events from news documents with high precision and completeness while naturally generating the event context of key events, as compared to EvMine and other existing methods. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

Back to TopTop