Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = graphene-reinforced piezoelectric composite plate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4942 KiB  
Article
Isogeometric Analysis of Graphene-Reinforced Functionally Gradient Piezoelectric Plates Resting on Winkler Elastic Foundations
by Yanan Liang, Shijie Zheng and Dejin Chen
Materials 2022, 15(16), 5727; https://doi.org/10.3390/ma15165727 - 19 Aug 2022
Cited by 13 | Viewed by 2428
Abstract
In this paper, the refined plate theory (RPT), Hamilton’s principle, and isogeometric analysis (IGA) are applied to investigate the static bending, free vibration and buckling behaviors of functionally graded graphene-platelet-reinforced piezoelectric (FG-GRP) plates resting on a Winkler elastic foundation. The graphene platelets (GPLs) [...] Read more.
In this paper, the refined plate theory (RPT), Hamilton’s principle, and isogeometric analysis (IGA) are applied to investigate the static bending, free vibration and buckling behaviors of functionally graded graphene-platelet-reinforced piezoelectric (FG-GRP) plates resting on a Winkler elastic foundation. The graphene platelets (GPLs) are distributed in polyvinylidene fluoride (PVDF) as a power function along the plate thickness direction to generate functionally gradient materials (FGMs). The modified Halpin–Tsai parallel model predicts the effective Young’s modulus of each graphene-reinforced piezoelectric composite plate layer, and the rule of the mixture can be used to calculate the effective Poisson’s ratio, mass density, and piezoelectric properties. Under different graphene distribution patterns and boundary conditions, the effects of a plate’s geometric dimensions, GPLs’ physical properties, GPLs’ geometric properties and the elastic coefficient of the Winkler elastic foundation on deflections, frequencies and bucking loads of the FG-GRP plates are investigated in depth. The convergence and computational efficiency of the present IGA are confirmed versus other studies. Furthermore, the results illustrate that a small amount of GPL reinforcements can improve the FG-GRP plates’ mechanical properties, i.e., GPLs can improve the system’s vibration and stability characteristics. The more GPL reinforcements spread into the surface layers, the more effective it is at enhancing the system’s stiffness. Full article
(This article belongs to the Special Issue Advances in Smart Materials and Applications)
Show Figures

Figure 1

18 pages, 6692 KiB  
Article
Active Flutter Suppression and Aeroelastic Response of Functionally Graded Multilayer Graphene Nanoplatelet Reinforced Plates with Piezoelectric Patch
by Jie Chen, Ruofan Han, Dekun Liu and Wei Zhang
Appl. Sci. 2022, 12(3), 1244; https://doi.org/10.3390/app12031244 - 25 Jan 2022
Cited by 17 | Viewed by 2348
Abstract
This paper investigates the aeroelastic flutter and vibration reduction of functionally graded (FG) multilayer graphene nanoplatelets (GPLs) reinforced composite plates with piezoelectric patch subjected to supersonic flow. Activated by the control voltage, the piezoelectric patch can generate the active mass and active stiffness [...] Read more.
This paper investigates the aeroelastic flutter and vibration reduction of functionally graded (FG) multilayer graphene nanoplatelets (GPLs) reinforced composite plates with piezoelectric patch subjected to supersonic flow. Activated by the control voltage, the piezoelectric patch can generate the active mass and active stiffness that can accordingly increase the base plate’s stiffness and mass. As a result, it changes the GPLs reinforced plate’s dynamic characteristics. The motion equation of the plate-piezoelectric system is derived through the Hamilton principle. Based on the modified Halpin–Tsai model, the effects of graphene nanoplatelets weight fraction and distribution pattern on the dynamic behaviors of the plate are numerically studied in detail. The result illustrates that adding a few amounts of grapheme nanoplatelets can effectually enhance the aeroelastic properties of the plates. Two kinds of control strategies, including the displacement and acceleration feedback control, are applied to suppress the occurrence of the flutter of the plate. It shows that the displacement and acceleration feedback control can improve the critical flutter Mach number of the plate by attaching active stiffness and active mass, respectively. Furthermore, the combined displacement and acceleration feedback control has a better control effect than that of considering only one of them. Full article
(This article belongs to the Special Issue Vibration Control and Applications)
Show Figures

Figure 1

22 pages, 11819 KiB  
Article
Analytical Solution for Static and Dynamic Analysis of Graphene-Based Hybrid Flexoelectric Nanostructures
by Kishor Balasaheb Shingare and Susmita Naskar
J. Compos. Sci. 2021, 5(3), 74; https://doi.org/10.3390/jcs5030074 - 6 Mar 2021
Cited by 9 | Viewed by 3941
Abstract
Owing to their applications in devices such as in electromechanical sensors, actuators and nanogenerators, the consideration of size-dependent properties in the electromechanical response of composites is of great importance. In this study, a closed-form solution based on the linear piezoelectricity, Kirchhoff’s plate theory [...] Read more.
Owing to their applications in devices such as in electromechanical sensors, actuators and nanogenerators, the consideration of size-dependent properties in the electromechanical response of composites is of great importance. In this study, a closed-form solution based on the linear piezoelectricity, Kirchhoff’s plate theory and Navier’s solution was developed, to envisage the electromechanical behaviors of hybrid graphene-reinforced piezoelectric composite (GRPC) plates, considering the flexoelectric effect. The governing equations and respective boundary conditions were obtained, using Hamilton’s variational principle for achieving static deflection and resonant frequency. Moreover, the different parameters considering aspect ratio, thickness of plate, different loadings (inline, point, uniformly distributed load (UDL), uniformly varying load (UVL)), the combination of different volume fraction of graphene and piezoelectric lead zirconate titanate are considered to attain the desired bending deflection and frequency response of GRPC. Different mode shapes and flexoelectric coefficients are also considered and the results reveal that the proper addition of graphene percentage and flexoelectric effect on the static and dynamic responses of GRPC plate is substantial. The obtained results expose that the flexoelectric effect on the piezoelastic response of the bending of nanocomposite plates are worth paying attention to, in order to develop a nanoelectromechanical system (NEMS). Our fundamental study sheds the possibility of evolving lightweight and high-performance NEMS applications over the existing piezoelectric materials. Full article
(This article belongs to the Special Issue Advanced Multi-functional Composites and Metamaterials)
Show Figures

Figure 1

Back to TopTop