Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline

Search Results (1)

Search Parameters:
Keywords = gold kiwi-derived extracellular nanovesicles (GK-NVs)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2850 KiB  
Article
Gold Kiwi-Derived Nanovesicles Mitigate Ultraviolet-Induced Photoaging and Enhance Osteogenic Differentiation in Bone Marrow Mesenchymal Stem Cells
by Doyeon Kim, Chanho Lee, Manho Kim and Ju Hyun Park
Antioxidants 2024, 13(12), 1474; https://doi.org/10.3390/antiox13121474 - 29 Nov 2024
Cited by 1 | Viewed by 1115
Abstract
Bone marrow mesenchymal stem cells (BM-MSCs) play a crucial role in bone formation through their ability to differentiate into osteoblasts. Aging, however, detrimentally affects the differentiation and proliferation capacities of BM-MSCs, consequently impairing bone regeneration. Thus, mitigating the aging effects on BM-MSCs is [...] Read more.
Bone marrow mesenchymal stem cells (BM-MSCs) play a crucial role in bone formation through their ability to differentiate into osteoblasts. Aging, however, detrimentally affects the differentiation and proliferation capacities of BM-MSCs, consequently impairing bone regeneration. Thus, mitigating the aging effects on BM-MSCs is vital for addressing bone-related pathologies. In this study, we demonstrate that extracellular nanovesicles isolated from gold kiwi (GK-NVs) protect human BM-MSCs from ultraviolet (UV)-induced photoaging, thereby alleviating aging-related impairments in cellular functions that are crucial for bone homeostasis. Notably, GK-NVs were efficiently taken up by BM-MSCs without causing cytotoxicity. GK-NVs reduced intracellular reactive oxygen species (ROS) levels upon UV irradiation, restoring impaired proliferation and migration capabilities. Furthermore, GK-NVs corrected the skewed differentiation capacities of UV-irradiated BM-MSCs by enhancing osteoblast differentiation, as evidenced by the increased expression in osteoblast-specific genes and the calcium deposition, and by reducing adipocyte differentiation, as indicated by the decreased lipid droplet formation. These findings position GK-NVs as a promising biomaterial for the treatment of bone-related diseases such as osteoporosis. Full article
(This article belongs to the Special Issue Antioxidants as Anti-Aging Interventions)
Show Figures

Figure 1

Back to TopTop