Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = geovisual analyitcs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 6509 KB  
Article
A Framework for Visual Analytics of Spatio-Temporal Sensor Observations from Data Streams
by Bolelang H. Sibolla, Serena Coetzee and Terence L. Van Zyl
ISPRS Int. J. Geo-Inf. 2018, 7(12), 475; https://doi.org/10.3390/ijgi7120475 - 11 Dec 2018
Cited by 12 | Viewed by 6155
Abstract
Sensor networks generate substantial amounts of frequently updated, highly dynamic data that are transmitted as packets in a data stream. The high frequency and continuous unbound nature of data streams leads to challenges when deriving knowledge from the underlying observations. This paper presents [...] Read more.
Sensor networks generate substantial amounts of frequently updated, highly dynamic data that are transmitted as packets in a data stream. The high frequency and continuous unbound nature of data streams leads to challenges when deriving knowledge from the underlying observations. This paper presents (1) a state of the art review into visual analytics of geospatial, spatio-temporal streaming data, and (2) proposes a framework based on the identified gaps from the review. The framework consists of (1) the data model that characterizes the sensor observation data, (2) the user model, which addresses the user queries and manages domain knowledge, (3) the design model, which handles the patterns that can be uncovered from the data and corresponding visualizations, and (4) the visualization model, which handles the rendering of the data. The conclusion from the visualization model is that streaming sensor observations require tools that can handle multivariate, multiscale, and time series displays. The design model reveals that the most useful patterns are those that show relationships, anomalies, and aggregations of the data. The user model highlights the need for handling missing data, dealing with high frequency changes, as well as the ability to review retrospective changes. Full article
(This article belongs to the Special Issue Spatial Stream Processing )
Show Figures

Figure 1

Back to TopTop