Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = geometric Langlands correspondence

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 379 KB  
Article
Involutive Symmetries and Langlands Duality in Moduli Spaces of Principal G-Bundles
by Álvaro Antón-Sancho
Symmetry 2025, 17(6), 819; https://doi.org/10.3390/sym17060819 - 24 May 2025
Cited by 1 | Viewed by 620
Abstract
Let X be a compact Riemann surface of genus g2, G be a complex semisimple Lie group, and MG(X) be the moduli space of stable principal G-bundles. This paper studies the fixed point set of [...] Read more.
Let X be a compact Riemann surface of genus g2, G be a complex semisimple Lie group, and MG(X) be the moduli space of stable principal G-bundles. This paper studies the fixed point set of involutions on MG(X) induced by an anti-holomorphic involution τ on X and a Cartan involution θ of G, producing an involution σ=θτ. These fixed points are shown to correspond to stable GR-bundles over the real curve (Xτ,τ), where GR is the real form associated with θ. The fixed point set MG(X)σ consists of exactly 2r connected components, each a smooth complex manifold of dimension (g1)dimG2, where r is the rank of the fundamental group of the compact form of G. A cohomological obstruction in H2(Xτ,π1(GR)) characterizes which bundles are fixed. A key result establishes a derived equivalence between coherent sheaves on MG(X)σ and on the fixed point set of the dual involution on the moduli space of G-local systems, where G denotes the Langlands dual of G. This provides an extension of the Geometric Langlands Correspondence to settings with involutions. An application to the Chern–Simons theory on real curves interprets MG(X)σ as a (B,B,B)-brane, mirror to an (A,A,A)-brane in the Hitchin system, revealing new links between real structures, quantization, and mirror symmetry. Full article
(This article belongs to the Special Issue Symmetry in Integrable Systems: Topics and Advances)
Back to TopTop