Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = gadolinium-doped iron oxide nanoparticles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 9203 KiB  
Article
Synthesis and Characterisation of Nanocrystalline CoxFe1−xGDC Powders as a Functional Anode Material for the Solid Oxide Fuel Cell
by Laura Quinlan, Talia Brooks, Nasrin Ghaemi, Harvey Arellano-Garcia, Maryam Irandoost, Fariborz Sharifianjazi and Bahman Amini Horri
Materials 2024, 17(15), 3864; https://doi.org/10.3390/ma17153864 - 4 Aug 2024
Cited by 2 | Viewed by 1946
Abstract
The necessity for high operational temperatures presents a considerable obstacle to the commercial viability of solid oxide fuel cells (SOFCs). The introduction of active co-dopant ions to polycrystalline solid structures can directly impact the physiochemical and electrical properties of the resulting composites including [...] Read more.
The necessity for high operational temperatures presents a considerable obstacle to the commercial viability of solid oxide fuel cells (SOFCs). The introduction of active co-dopant ions to polycrystalline solid structures can directly impact the physiochemical and electrical properties of the resulting composites including crystallite size, lattice parameters, ionic and electronic conductivity, sinterability, and mechanical strength. This study proposes cobalt–iron-substituted gadolinium-doped ceria (CoxFe1-xGDC) as an innovative, nickel-free anode composite for developing ceramic fuel cells. A new co-precipitation technique using ammonium tartrate as the precipitant in a multi-cationic solution with Co2+, Gd3+, Fe3+, and Ce3+ ions was utilized. The physicochemical and morphological characteristics of the synthesized samples were systematically analysed using a comprehensive set of techniques, including DSC/TGA for a thermal analysis, XRD for a crystallographic analysis, SEM/EDX for a morphological and elemental analysis, FT-IR for a chemical bonding analysis, and Raman spectroscopy for a vibrational analysis. The morphological analysis, SEM, showed the formation of nanoparticles (≤15 nm), which corresponded well with the crystal size determined by the XRD analysis, which was within the range of ≤10 nm. The fabrication of single SOFC bilayers occurred within an electrolyte-supported structure, with the use of the GDC as the electrolyte layer and the CoO–Fe2O3/GDC composite as the anode. SEM imaging and the EIS analysis were utilized to examine the fabricated symmetrical cells. Full article
Show Figures

Graphical abstract

16 pages, 3919 KiB  
Article
Magnetic Properties and SAR for Gadolinium-Doped Iron Oxide Nanoparticles Prepared by Hydrothermal Method
by Heba Kahil, Ahmed Faramawy, Hesham El-Sayed and Adel Abdel-Sattar
Crystals 2021, 11(10), 1153; https://doi.org/10.3390/cryst11101153 - 22 Sep 2021
Cited by 29 | Viewed by 4777
Abstract
This study is an attempt to produce gadolinium-doped iron oxide nanoparticles for the purpose of utilization in magnetic fluid hyperthermia (MFH). Six gadolinium-doped iron oxide samples with varying gadolinium contents ( [...] Read more.
This study is an attempt to produce gadolinium-doped iron oxide nanoparticles for the purpose of utilization in magnetic fluid hyperthermia (MFH). Six gadolinium-doped iron oxide samples with varying gadolinium contents (GdxFe3xO4,x=0, 0.02, 0.04, 0.06, 0.08, 0.1) were prepared using the hydrothermal method at 180 °C and high vapor pressure to incorporate gadolinium ions in the iron oxide structure. The samples were indexed as GdIO/x, with x varying from 0.0 to 0.1. The results reveal that gadolinium ions have a low solubility limit in the iron oxide lattice (x = 0.04). The addition of gadolinium caused distortion in the produced maghemite phase and formation of other phases. Based on X-ray diffraction (XRD) analysis and photoelectron spectroscopy (XPS), it was observed that gadolinium mostly crystalized as gadolinium hydroxide, Gd (OH)3 for gadolinium concentrations above the solubility limit. The measured magnetization values are consistent with the formed phases. The saturation magnetization values for all gadolinium-doped samples are lower than the undoped sample. The specific absorption rate (SAR) for the pure iron oxide samples was measured. Sample GdIO/0.04, pure iron oxide doped with gadolinium, showed the highest potential to produce heat at a frequency of 198 kHz. Therefore, the sample is considered to hold great promise as an MFH agent. Full article
Show Figures

Graphical abstract

11 pages, 2936 KiB  
Article
Impact of Gadolinium on the Structure and Magnetic Properties of Nanocrystalline Powders of Iron Oxides Produced by the Extraction-Pyrolytic Method
by Vera Serga, Regina Burve, Mikhail Maiorov, Aija Krumina, Ramūnas Skaudžius, Aleksej Zarkov, Aivaras Kareiva and Anatoli I. Popov
Materials 2020, 13(18), 4147; https://doi.org/10.3390/ma13184147 - 17 Sep 2020
Cited by 37 | Viewed by 3479
Abstract
Interest in magnetic nanoparticles is primarily due to their practical use. In this work, for the production of nanocrystalline powders of pure and gadolinium doped iron oxides, the extraction-pyrolytic method (EPM) was used. As a precursor, either iron-containing extract (iron (III) caproate in [...] Read more.
Interest in magnetic nanoparticles is primarily due to their practical use. In this work, for the production of nanocrystalline powders of pure and gadolinium doped iron oxides, the extraction-pyrolytic method (EPM) was used. As a precursor, either iron-containing extract (iron (III) caproate in caproic acid) or its mixture with gadolinium-containing extract (gadolinium (III) valerate in valeric acid) was used. The mixed precursor contained 0.5 mol %, 2.5 mol %, 12.5 mol %, 50 mol %, and 75 mol % gadolinium in relation to the iron content. The formation of iron oxide phases, depending on the preparation conditions, was investigated. According to the results obtained, it was demonstrated that the presence of more than 2.5 mol % gadolinium additive in the mixed precursor inhibits the magnetite-to-hematite transformation process during thermal treatment. Produced samples were characterized by XRD and SEM methods, and the magnetic properties were studied. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Graphical abstract

Back to TopTop