Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = full frequency reuse distance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 4089 KiB  
Article
Taguchi Method-Based Synthesis of a Circular Antenna Array for Enhanced IoT Applications
by Wided Amara, Ramzi Kheder, Ridha Ghayoula, Issam El Gmati, Amor Smida, Jaouhar Fattahi and Lassaad Latrach
Telecom 2025, 6(1), 7; https://doi.org/10.3390/telecom6010007 - 14 Jan 2025
Cited by 1 | Viewed by 1179
Abstract
Linear antenna arrays exhibit radiation patterns that are restricted to a half-space and feature axial radiation, which can be a significant drawback for applications that require omnidirectional coverage. To address this limitation, the synthesis method utilizing the Taguchi approach, originally designed for linear [...] Read more.
Linear antenna arrays exhibit radiation patterns that are restricted to a half-space and feature axial radiation, which can be a significant drawback for applications that require omnidirectional coverage. To address this limitation, the synthesis method utilizing the Taguchi approach, originally designed for linear arrays, can be effectively extended to two-dimensional or planar antenna arrays. In the context of a linear array, the synthesis process primarily involves determining the feeding law and/or the spatial distribution of the elements along a single axis. Conversely, for a planar array, the synthesis becomes more complex, as it requires the identification of the complex weighting of the feed and/or the spatial distribution of sources across a two-dimensional plane. This adaptation to planar arrays is facilitated by substituting the direction θ with the pair of directions (θ,ϕ), allowing for a more comprehensive coverage of the angular domain. This article focuses on exploring various configurations of planar arrays, aiming to enhance their performance. The primary objective of these configurations is often to minimize the levels of secondary lobes and/or array lobes while enabling a full sweep of the angular space. Secondary lobes can significantly impede system performance, particularly in multibeam applications, where they restrict the minimum distance for frequency channel reuse. This restriction is critical, as it affects the overall efficiency and effectiveness of communication systems that rely on precise beamforming and frequency allocation. By investigating alternative planar array designs and their synthesis methods, this research seeks to provide solutions that improve coverage, reduce interference from secondary lobes, and ultimately enhance the functionality of antennas in diverse applications, including telecommunications, radar systems, and wireless communication. Full article
Show Figures

Figure 1

20 pages, 1517 KiB  
Article
C-V2X Centralized Resource Allocation with Spectrum Re-Partitioning in Highway Scenario
by Saif Sabeeh, Krzysztof Wesołowski and Paweł Sroka
Electronics 2022, 11(2), 279; https://doi.org/10.3390/electronics11020279 - 16 Jan 2022
Cited by 18 | Viewed by 3351
Abstract
Cellular Vehicle-to-Everything communication is an important scenario of 5G technologies. Modes 3 and 4 of the wireless systems introduced in Release 14 of 3GPP standards are intended to support vehicular communication with and without cellular infrastructure. In the case of Mode 3, dynamic [...] Read more.
Cellular Vehicle-to-Everything communication is an important scenario of 5G technologies. Modes 3 and 4 of the wireless systems introduced in Release 14 of 3GPP standards are intended to support vehicular communication with and without cellular infrastructure. In the case of Mode 3, dynamic resource selection and semi-persistent resource scheduling algorithms result in a signalling cost problem between vehicles and infrastructure, therefore, we propose a means to decrease it. This paper employs Re-selection Counter in centralized resource allocation as a decremental counter of new resource requests. Furthermore, two new spectrum re-partitioning and frequency reuse techniques in Roadside Units (RSUs) are considered to avoid resource collisions and diminish high interference impact via increasing the frequency reuse distance. The two techniques, full and partial frequency reuse, partition the bandwidth into two sub-bands. Two adjacent RSUs apply these sub-bands with the Full Frequency Reuse (FFR) technique. In the Partial Frequency Reuse (PFR) technique, the sub-bands are further re-partitioned among vehicles located in the central and edge parts of the RSU coverage. The sub-bands assignment in the nearest RSUs using the same sub-bands is inverted concerning the current RSU to increase the frequency reuse distance. The PFR technique shows promising results compared with the FFR technique. Both techniques are compared with the single band system for different vehicle densities. Full article
(This article belongs to the Special Issue Problems and Challenges of Physical Layer in 5G Systems)
Show Figures

Figure 1

14 pages, 1731 KiB  
Article
Dynamic Clustering and Coordinated User Scheduling for Cooperative Interference Cancellation on Ultra-High Density Distributed Antenna Systems
by Kazuki Maruta
Entropy 2018, 20(8), 616; https://doi.org/10.3390/e20080616 - 19 Aug 2018
Cited by 1 | Viewed by 4058
Abstract
This paper proposes dynamic clustering and user scheduling for previously conceived inter-cluster interference cancellation scheme on ultra-high density distributed antenna system (UHD-DAS). UHD-DAS is composed of one central unit (CU) and densely deployed remote radio units (RUs) serving as small cell access points. [...] Read more.
This paper proposes dynamic clustering and user scheduling for previously conceived inter-cluster interference cancellation scheme on ultra-high density distributed antenna system (UHD-DAS). UHD-DAS is composed of one central unit (CU) and densely deployed remote radio units (RUs) serving as small cell access points. It can enhance spatial spectral efficiency by alleviating traffic load imposed per radio unit; however, intenser small cell deployment revives the inter-cell interference (ICI) problem. Cell clustering, cooperation of multiple RUs, can mitigate ICI partially, whereas inter-cluster interference (ICLI) still limits its possible capacity. Simplified ICLI cancellation based on localized RU cooperation was previously proposed to mitigate interference globally. The resolved issue is that it required frequency reuse distance to fully obtain its interference cancellation ability. This paper introduces dynamic clustering with coordinated user scheduling to ensure reuse distance without extra frequency reuse. Joint dynamic clustering and ICLI cancellation can effectively work and almost reaches ideal performance as full cooperative spatial multiplexing transmission. Full article
(This article belongs to the Special Issue Information Theory and 5G Technologies)
Show Figures

Figure 1

Back to TopTop