Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = flight envelope protection control

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 5256 KiB  
Article
Design of Ice Tolerance Flight Envelope Protection Control System for UAV Based on LSTM Neural Network for Detecting Icing Severity
by Ting Yue, Xianlong Wang, Bo Wang, Shang Tai, Hailiang Liu, Lixin Wang and Feihong Jiang
Drones 2025, 9(1), 63; https://doi.org/10.3390/drones9010063 - 16 Jan 2025
Cited by 1 | Viewed by 1073
Abstract
Icing on an unmanned aerial vehicle (UAV) can degrade aerodynamic performance, reduce flight capabilities, impair maneuverability and stability, and significantly impact flight safety. At present, most flight control methods for icing-affected aircraft adopt a conservative control strategy, in which small control inputs are [...] Read more.
Icing on an unmanned aerial vehicle (UAV) can degrade aerodynamic performance, reduce flight capabilities, impair maneuverability and stability, and significantly impact flight safety. At present, most flight control methods for icing-affected aircraft adopt a conservative control strategy, in which small control inputs are used to keep the aircraft’s angle of attack and other state variables within a limited range. However, this approach restricts the flight performance of icing aircraft. To address this issue, this paper innovatively proposes a design method of an ice tolerance flight envelope protection control system for a UAV on the base of icing severity detection using a long short-term memory (LSTM) neural network. First, the icing severity is detected using an LSTM neural network without requiring control surface excitation. It relies solely on the aircraft’s historical flight data to detect the icing severity. Second, by modifying the fuzzy risk level boundaries of the icing aircraft flight parameters, a nonlinear mapping relationship is established between the tracking command risk level, the UAV flight control command magnitude, and the icing severity. This provides a safe range of tracking commands for guiding the aircraft out of the icing region. Finally, the ice tolerance flight envelope protection control law is developed, using a nonlinear dynamic inverse controller (NDIC) as the inner loop and a nonlinear model predictive controller (NMPC) as the outer loop. This approach ensures boundary protection for state variables such as the angle of attack and roll angle while simultaneously enhancing the robustness of the flight control system. The effectiveness and superiority of the method proposed in this paper are verified for the example aircraft through mathematical simulation. Full article
(This article belongs to the Special Issue Drones in the Wild)
Show Figures

Figure 1

29 pages, 9869 KiB  
Article
A Self–Tuning Intelligent Controller for a Smart Actuation Mechanism of a Morphing Wing Based on Shape Memory Alloys
by Teodor Lucian Grigorie and Ruxandra Mihaela Botez
Actuators 2023, 12(9), 350; https://doi.org/10.3390/act12090350 - 31 Aug 2023
Cited by 12 | Viewed by 3831
Abstract
The paper exposes some of the results obtained in a major research project related to the design, development, and experimental testing of a morphing wing demonstrator, with the main focus on the development of the automatic control of the actuation system, on its [...] Read more.
The paper exposes some of the results obtained in a major research project related to the design, development, and experimental testing of a morphing wing demonstrator, with the main focus on the development of the automatic control of the actuation system, on its integration into the experimental developed morphing wing system, and on the gain related to the extension of the laminar flow over the wing upper surface when it was morphed based on this control system. The project was a multidisciplinary one, being realized in collaboration between several Canadian research teams coming from universities, research institutes, and industrial entities. The project’s general aim was to reduce the operating costs for the new generation of aircraft via fuel economy in flight and also to improve aircraft performance, expand its flight envelope, replace conventional control surfaces, reduce drag to improve range, and reduce vibrations and flutter. In this regard, the research team realized theoretical studies, accompanied by the development and wind tunnel experimental testing of a rectangular wing model equipped with a morphing skin, electrical smart actuators, and pressure sensors. The wing model was designed to be actively controlled so as to change its shape and produce the expansion of laminar flow on its upper surface. The actuation mechanism used to change the wing shape by morphing its flexible upper surface (manufactured from composite materials) is based on Shape Memory Alloys (SMA) actuators. Shown here are the smart mechanism used to actuate the wing’s upper surface, the design of the intelligent actuation control concept, which uses a self–tuning fuzzy logic Proportional–Integral–Derivative plus conventional On–Off controller, and some of the results provided by the wind tunnel experimental testing of the model equipped with the intelligent controlled actuation system. The control mechanism uses two fuzzy logic controllers, one used as the main controller and the other one as the tuning controller, having the role of adjusting (to tune) the coefficients involved in the operation of the main controller. The control system also took into account the physical limitations of the SMA actuators, including a software protection section for the SMA wires, implemented by using a temperature limiter and by saturating the electrical current powering the actuators. The On–Off component of the integrated controller deactivates or activates the heating phase of the SMA wires, a situation when the actuator passes into the cooling phase or is controlled by the Self–Tuning Fuzzy Logic Controller. Full article
(This article belongs to the Special Issue Actuators in 2022)
Show Figures

Figure 1

18 pages, 4778 KiB  
Article
Research on the Determination Method of Aircraft Flight Safety Boundaries Based on Adaptive Control
by Miaosen Wang, Yuan Xue and Kang Wang
Electronics 2022, 11(21), 3595; https://doi.org/10.3390/electronics11213595 - 3 Nov 2022
Cited by 1 | Viewed by 2201
Abstract
Icing is one of the main external environmental factors causing loss of control (LOC) in aircraft. To ensure safe flying in icy conditions, modern large aircraft are all fitted with anti-icing systems. Although aircraft anti-icing technology is becoming more sophisticated as research continues [...] Read more.
Icing is one of the main external environmental factors causing loss of control (LOC) in aircraft. To ensure safe flying in icy conditions, modern large aircraft are all fitted with anti-icing systems. Although aircraft anti-icing technology is becoming more sophisticated as research continues to expand and deepen, the scope of protection provided by anti-icing systems based on existing anti-icing technology is still relatively limited, and in practice, it is difficult to avoid flying with ice even when the anti-icing system is switched on. Therefore, it is necessary to consider providing additional safety strategies in addition to the anti-icing system, i.e., to consider icing safety from the aerodynamic, stability, and control points of view during the aircraft design phase, and to build a complete ice-tolerant protection system combining aerodynamic design methods, flight control strategies and implementation equipment. Based on the modern control theory of adaptive control, this paper presents a new method of envelope protection in icing situations based on a case study of icing, which has the advantages of strong real-time performance and good robustness, and has high engineering application value. Full article
(This article belongs to the Section Systems & Control Engineering)
Show Figures

Figure 1

24 pages, 6473 KiB  
Article
An Output-Based Limit Protection Strategy for Turbofan Engine Propulsion Control with Output Constraints
by Jiakun Qin, Muxuan Pan, Wenhao Xu and Jinquan Huang
Energies 2019, 12(21), 4043; https://doi.org/10.3390/en12214043 - 24 Oct 2019
Cited by 3 | Viewed by 2251
Abstract
To accomplish the limit protection task, the Min-Max selection structure is generally adopted in current aircraft engine control strategies. However, since no relationship between controller switching and limit violation is established, this structure is inherently conservative and may produce slower transient responses than [...] Read more.
To accomplish the limit protection task, the Min-Max selection structure is generally adopted in current aircraft engine control strategies. However, since no relationship between controller switching and limit violation is established, this structure is inherently conservative and may produce slower transient responses than the behavior by engine nature. This paper proposes an output-based limit management strategy, which consists of the safety margin module and the parameter prediction module to monitor system responses, plus the switching logic to govern switches between the main controller and limiters, and, in this way, a faster transient performance is achieved, and the limit protections in transient states become more effective. To realize smooth switching control, the linear-quadratic bumpless transfer method is developed. The design principle of the multi-loop switching control and bumpless compensator is detailed, and the effect—on limit protection control performance—of the design parameters in the safety margin and parameter prediction modules are also analyzed. The proposed approach is tested using simulations covering the whole flight envelope on the nonlinear component-level model of a turbofan engine, and the superiority over the Min-Max architecture is also validated. Full article
Show Figures

Graphical abstract

Back to TopTop