Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = flexible analytic wavelet transform (FAWT)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 2134 KiB  
Article
A Methodical Framework Utilizing Transforms and Biomimetic Intelligence-Based Optimization with Machine Learning for Speech Emotion Recognition
by Sunil Kumar Prabhakar and Dong-Ok Won
Biomimetics 2024, 9(9), 513; https://doi.org/10.3390/biomimetics9090513 - 26 Aug 2024
Cited by 3 | Viewed by 1111
Abstract
Speech emotion recognition (SER) tasks are conducted to extract emotional features from speech signals. The characteristic parameters are analyzed, and the speech emotional states are judged. At present, SER is an important aspect of artificial psychology and artificial intelligence, as it is widely [...] Read more.
Speech emotion recognition (SER) tasks are conducted to extract emotional features from speech signals. The characteristic parameters are analyzed, and the speech emotional states are judged. At present, SER is an important aspect of artificial psychology and artificial intelligence, as it is widely implemented in many applications in the human–computer interface, medical, and entertainment fields. In this work, six transforms, namely, the synchrosqueezing transform, fractional Stockwell transform (FST), K-sine transform-dependent integrated system (KSTDIS), flexible analytic wavelet transform (FAWT), chirplet transform, and superlet transform, are initially applied to speech emotion signals. Once the transforms are applied and the features are extracted, the essential features are selected using three techniques: the Overlapping Information Feature Selection (OIFS) technique followed by two biomimetic intelligence-based optimization techniques, namely, Harris Hawks Optimization (HHO) and the Chameleon Swarm Algorithm (CSA). The selected features are then classified with the help of ten basic machine learning classifiers, with special emphasis given to the extreme learning machine (ELM) and twin extreme learning machine (TELM) classifiers. An experiment is conducted on four publicly available datasets, namely, EMOVO, RAVDESS, SAVEE, and Berlin Emo-DB. The best results are obtained as follows: the Chirplet + CSA + TELM combination obtains a classification accuracy of 80.63% on the EMOVO dataset, the FAWT + HHO + TELM combination obtains a classification accuracy of 85.76% on the RAVDESS dataset, the Chirplet + OIFS + TELM combination obtains a classification accuracy of 83.94% on the SAVEE dataset, and, finally, the KSTDIS + CSA + TELM combination obtains a classification accuracy of 89.77% on the Berlin Emo-DB dataset. Full article
Show Figures

Figure 1

14 pages, 834 KiB  
Article
Automated Diagnosis of Myocardial Infarction ECG Signals Using Sample Entropy in Flexible Analytic Wavelet Transform Framework
by Mohit Kumar, Ram Bilas Pachori and U. Rajendra Acharya
Entropy 2017, 19(9), 488; https://doi.org/10.3390/e19090488 - 13 Sep 2017
Cited by 124 | Viewed by 11053
Abstract
Myocardial infarction (MI) is a silent condition that irreversibly damages the heart muscles. It expands rapidly and, if not treated timely, continues to damage the heart muscles. An electrocardiogram (ECG) is generally used by the clinicians to diagnose the MI patients. Manual identification [...] Read more.
Myocardial infarction (MI) is a silent condition that irreversibly damages the heart muscles. It expands rapidly and, if not treated timely, continues to damage the heart muscles. An electrocardiogram (ECG) is generally used by the clinicians to diagnose the MI patients. Manual identification of the changes introduced by MI is a time-consuming and tedious task, and there is also a possibility of misinterpretation of the changes in the ECG. Therefore, a method for automatic diagnosis of MI using ECG beat with flexible analytic wavelet transform (FAWT) method is proposed in this work. First, the segmentation of ECG signals into beats is performed. Then, FAWT is applied to each ECG beat, which decomposes them into subband signals. Sample entropy (SEnt) is computed from these subband signals and fed to the random forest (RF), J48 decision tree, back propagation neural network (BPNN), and least-squares support vector machine (LS-SVM) classifiers to choose the highest performing one. We have achieved highest classification accuracy of 99.31% using LS-SVM classifier. We have also incorporated Wilcoxon and Bhattacharya ranking methods and observed no improvement in the performance. The proposed automated method can be installed in the intensive care units (ICUs) of hospitals to aid the clinicians in confirming their diagnosis. Full article
Show Figures

Figure 1

21 pages, 428 KiB  
Article
Use of Accumulated Entropies for Automated Detection of Congestive Heart Failure in Flexible Analytic Wavelet Transform Framework Based on Short-Term HRV Signals
by Mohit Kumar, Ram Bilas Pachori and U. Rajendra Acharya
Entropy 2017, 19(3), 92; https://doi.org/10.3390/e19030092 - 27 Feb 2017
Cited by 62 | Viewed by 6805
Abstract
In the present work, an automated method to diagnose Congestive Heart Failure (CHF) using Heart Rate Variability (HRV) signals is proposed. This method is based on Flexible Analytic Wavelet Transform (FAWT), which decomposes the HRV signals into different sub-band signals. Further, Accumulated Fuzzy [...] Read more.
In the present work, an automated method to diagnose Congestive Heart Failure (CHF) using Heart Rate Variability (HRV) signals is proposed. This method is based on Flexible Analytic Wavelet Transform (FAWT), which decomposes the HRV signals into different sub-band signals. Further, Accumulated Fuzzy Entropy (AFEnt) and Accumulated Permutation Entropy (APEnt) are computed over cumulative sums of these sub-band signals. This provides complexity analysis using fuzzy and permutation entropies at different frequency scales. We have extracted 20 features from these signals obtained at different frequency scales of HRV signals. The Bhattacharyya ranking method is used to rank the extracted features from the HRV signals of three different lengths (500, 1000 and 2000 samples). These ranked features are fed to the Least Squares Support Vector Machine (LS-SVM) classifier. Our proposed system has obtained a sensitivity of 98.07%, specificity of 98.33% and accuracy of 98.21% for the 500-sample length of HRV signals. Our system yielded a sensitivity of 97.95%, specificity of 98.07% and accuracy of 98.01% for HRV signals of a length of 1000 samples and a sensitivity of 97.76%, specificity of 97.67% and accuracy of 97.71% for signals corresponding to the 2000-sample length of HRV signals. Our automated system can aid clinicians in the accurate detection of CHF using HRV signals. It can be installed in hospitals, polyclinics and remote villages where there is no access to cardiologists. Full article
(This article belongs to the Special Issue Entropy and Cardiac Physics II)
Show Figures

Figure 1

Back to TopTop