Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = filopodial-protrusions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 6223 KiB  
Article
Distinct Alterations in Dendritic Spine Morphology in the Absence of β-Neurexins
by Leonie Mohrmann, Jochen Seebach, Markus Missler and Astrid Rohlmann
Int. J. Mol. Sci. 2024, 25(2), 1285; https://doi.org/10.3390/ijms25021285 - 20 Jan 2024
Viewed by 1952
Abstract
Dendritic spines are essential for synaptic function because they constitute the postsynaptic compartment of the neurons that receives the most excitatory input. The extracellularly shorter variant of the presynaptic cell adhesion molecules neurexins, β-neurexin, has been implicated in various aspects of synaptic function, [...] Read more.
Dendritic spines are essential for synaptic function because they constitute the postsynaptic compartment of the neurons that receives the most excitatory input. The extracellularly shorter variant of the presynaptic cell adhesion molecules neurexins, β-neurexin, has been implicated in various aspects of synaptic function, including neurotransmitter release. However, its role in developing or stabilizing dendritic spines as fundamental computational units of excitatory synapses has remained unclear. Here, we show through morphological analysis that the deletion of β-neurexins in hippocampal neurons in vitro and in hippocampal tissue in vivo affects presynaptic dense-core vesicles, as hypothesized earlier, and, unexpectedly, alters the postsynaptic spine structure. Specifically, we observed that the absence of β-neurexins led to an increase in filopodial-like protrusions in vitro and more mature mushroom-type spines in the CA1 region of adult knockout mice. In addition, the deletion of β-neurexins caused alterations in the spine head dimension and an increase in spines with perforations of their postsynaptic density but no changes in the overall number of spines or synapses. Our results indicate that presynaptic β-neurexins play a role across the synaptic cleft, possibly by aligning with postsynaptic binding partners and glutamate receptors via transsynaptic columns. Full article
(This article belongs to the Special Issue Morphology-Function Relationships of Neurons and Glia Cells)
Show Figures

Figure 1

14 pages, 4275 KiB  
Article
The Density and Length of Filopodia Associate with the Activity of Hyaluronan Synthesis in Tumor Cells
by Heikki Kyykallio, Sanna Oikari, María Bueno Álvez, Carlos José Gallardo Dodd, Janne Capra and Kirsi Rilla
Cancers 2020, 12(7), 1908; https://doi.org/10.3390/cancers12071908 - 15 Jul 2020
Cited by 19 | Viewed by 5861
Abstract
Filopodia are multifunctional finger-like plasma membrane protrusions with bundles of actin filaments that exist in virtually all cell types. It has been known for some time that hyaluronan synthesis activity induces filopodial growth. However, because of technical challenges in the studies of these [...] Read more.
Filopodia are multifunctional finger-like plasma membrane protrusions with bundles of actin filaments that exist in virtually all cell types. It has been known for some time that hyaluronan synthesis activity induces filopodial growth. However, because of technical challenges in the studies of these slender and fragile structures, no quantitative analyses have been performed so far to indicate their association with hyaluronan synthesis. In this work we comprehensively address the direct quantification of filopodial traits, covering for the first time length and density measurements in a series of human cancer cell lines with variable levels of hyaluronan synthesis. The synthesis and plasma membrane binding of hyaluronan were manipulated with hyaluronan synthase 3 (HAS3) and hyaluronan receptor CD44 overexpression, and treatments with mannose, 4-methylumbelliferone (4-MU), and glucosamine. The results of this work show that the growth of filopodia was associated with the levels of hyaluronan synthesis but was not dependent on CD44 expression. The results confirm the hypothesis that abundance and length of filopodia in cancer cells is associated with the activity of hyaluronan synthesis. Full article
(This article belongs to the Collection Matrix Effectors and Cancer)
Show Figures

Figure 1

19 pages, 4812 KiB  
Article
Intrinsic Cellular Responses of Human Wharton’s Jelly Mesenchymal Stem Cells Influenced by O2-Plasma-Modified and Unmodified Surface of Alkaline-Hydrolyzed 2D and 3D PCL Scaffolds
by Kewalin Inthanon, Wanida Janvikul, Siriwan Ongchai and Siriwadee Chomdej
J. Funct. Biomater. 2019, 10(4), 52; https://doi.org/10.3390/jfb10040052 - 18 Nov 2019
Cited by 2 | Viewed by 4929
Abstract
Polycaprolactone (PCL), a hydrophobic-degradable polyester, has been widely investigated and extensively developed, to increase the biocompatibility for tissue engineering. This research was the first trial to evaluate the intrinsic biological responses of human Wharton’s Jelly Mesenchymal Stem Cells (hWJMSCs) cultured on alkaline hydrolysis [...] Read more.
Polycaprolactone (PCL), a hydrophobic-degradable polyester, has been widely investigated and extensively developed, to increase the biocompatibility for tissue engineering. This research was the first trial to evaluate the intrinsic biological responses of human Wharton’s Jelly Mesenchymal Stem Cells (hWJMSCs) cultured on alkaline hydrolysis and low-pressure oxygen plasma modified 2D and 3D PCL scaffolds, without adding any differentiation inducers; this has not been reported before. Four types of the substrate were newly established: 2D plasma-treated PCL (2D-TP), 2D non-plasma-treated PCL (2D-NP), 3D plasma-treated PCL (3D-TP), and 3D non-plasma-treated PCL (3D-NP). Physicochemical characterization revealed that only plasma-treated PCL scaffolds significantly increased the hydrophilicity and % oxygen/carbon ratio on the surfaces. The RMS roughness of 3D was higher than 2D conformation, whilst the plasma-treated surfaces were rougher than the non-plasma treated ones. The cytocompatibility test demonstrated that the 2D PCLs enhanced the initial cell attachment in comparison to the 3Ds, indicated by a higher expression of focal adhesion kinase. Meanwhile, the 3Ds promoted cell proliferation and migration as evidence of higher cyclin-A expression and filopodial protrusion, respectively. The 3Ds potentially protected the cell from apoptosis/necrosis but also altered the pluripotency/differentiation-related gene expression. In summary, the different configuration and surface properties of PCL scaffolds displayed the significant potential and effectiveness for facilitating stem cell growth and differentiation in vitro. The cell–substrate interactions on modified surface PCL may provide some information which could be further applied in substrate architecture for stem cell accommodation in cell delivery system for tissue repair. Full article
Show Figures

Figure 1

20 pages, 9169 KiB  
Article
Enhanced Tribological and Bacterial Resistance of Carbon Nanotube with Ceria- and Silver-Incorporated Hydroxyapatite Biocoating
by Aditi Pandey, Anup Kumar Patel, Ariharan S., Vikram Kumar, Rajeev Kumar Sharma, Satish Kanhed, Vinod Kumar Nigam, Anup Keshri, Arvind Agarwal and Kantesh Balani
Nanomaterials 2018, 8(6), 363; https://doi.org/10.3390/nano8060363 - 24 May 2018
Cited by 31 | Viewed by 7030
Abstract
Pertaining to real-life applications (by scaling up) of hydroxyapatite (HA)-based materials, herein is a study illustrating the role of carbon nanotube (CNT) reinforcement with ceria (CeO2) and silver (Ag) in HA on titanium alloy (TiAl6V4) substrate, utilizing the plasma-spraying processing technique, [...] Read more.
Pertaining to real-life applications (by scaling up) of hydroxyapatite (HA)-based materials, herein is a study illustrating the role of carbon nanotube (CNT) reinforcement with ceria (CeO2) and silver (Ag) in HA on titanium alloy (TiAl6V4) substrate, utilizing the plasma-spraying processing technique, is presented. When compared with pure HA coating enhanced hardness (from 2.5 to 5.8 GPa), elastic modulus (from 110 to 171 GPa), and fracture toughness (from 0.7 to 2.2 MPa·m1/2) elicited a reduced wear rate from 55.3 × 10−5 mm3·N−1·m−1 to 2.1 × 10−5 mm3·N−1·m−1 in HA-CNT-CeO2-Ag. Besides, an order of magnitude lower Archard’s wear constant and a 41% decreased shear stress by for HA-CNT-CeO2-Ag coating depicted the effect of higher hardness and modulus of a material to control its wear phenomenon. Antibacterial property of 46% (bactericidal) is ascribed to Ag in addition to CNT-CeO2 in HA. Nonetheless, the composite coating also portrayed exaggerated L929 fibroblast cell growth (4.8 times more than HA), which was visualized as flat and elongated cells with multiple filopodial protrusions. Hence, synthesis of a material with enhanced mechanical integrity resulting in tribological resistance and cytocompatible efficacy was achieved, thereupon making HA-CNT-CeO2-Ag a scalable potent material for real-life load-bearing implantable bio-coating. Full article
(This article belongs to the Special Issue Nano-scale Mechanics of Biological Materials)
Show Figures

Figure 1

Back to TopTop