Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = field-aligned irregularities (FAIs)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3732 KB  
Technical Note
Study of the Long-Lasting Daytime Field-Aligned Irregularities in the Low-Latitude F-Region on 13 June 2022
by Pengfei Hu, Gang Chen, Chunxiao Yan, Shaodong Zhang, Guotao Yang, Qiang Zhang, Wanlin Gong and Zhiqiu He
Remote Sens. 2024, 16(15), 2738; https://doi.org/10.3390/rs16152738 - 26 Jul 2024
Cited by 1 | Viewed by 1250
Abstract
The unusual daytime F-region Field-Aligned Irregularities (FAIs) were observed by the HCOPAR and the satellites at low latitudes on 13 June 2022. These irregularities survived from night-time to the following afternoon at 15:00 LT. During daytime, they appeared as fossil structures with low [...] Read more.
The unusual daytime F-region Field-Aligned Irregularities (FAIs) were observed by the HCOPAR and the satellites at low latitudes on 13 June 2022. These irregularities survived from night-time to the following afternoon at 15:00 LT. During daytime, they appeared as fossil structures with low Doppler velocities and narrow spectral widths. These characteristics indicated that they drifted along the magnetic field lines without apparent zonal velocity to low latitudes. Combining the observations of the ICON satellite and the Hainan Digisonde, we derived the movement trails of these daytime irregularities. We attributed their generation to the rapid ascent of the F-layer due to the fluctuation of IMF Bz during the quiet geomagnetic conditions. Subsequently, the influence of the substorm on the low-latitude ionosphere was investigated and simulated. The substorm caused the intense Joule heating that enhanced the southward neutral winds, carrying the neutral compositional disturbances to low latitudes and resulting in a negative storm effect in Southeast Asia. The negative storm formed a low-density circumstance and slowed the dissipation of the daytime FAIs. These results may provide new insights into the generation of post-midnight irregularities and their relationship with daytime fossil structures. Full article
Show Figures

Figure 1

16 pages, 3723 KB  
Article
Interferometry Observations of the Gravity Wave Effect on the Sporadic E Layer
by Chane Moges Seid, Ching-Lun Su, Chien-Ya Wang and Yen-Hsyang Chu
Atmosphere 2023, 14(6), 987; https://doi.org/10.3390/atmos14060987 - 6 Jun 2023
Cited by 2 | Viewed by 2037
Abstract
On the basis of interferometry measurement made with the Chung-Li VHF radar, we investigated the effects of upward propagating gravity waves on the spatial structures and dynamic behavior of the 3 m field-aligned irregularities (FAIs) of the sporadic E (Es) layer. The results [...] Read more.
On the basis of interferometry measurement made with the Chung-Li VHF radar, we investigated the effects of upward propagating gravity waves on the spatial structures and dynamic behavior of the 3 m field-aligned irregularities (FAIs) of the sporadic E (Es) layer. The results demonstrate that the quasi-periodic gravity waves oscillating at a dominant wave period of about 46.3 min propagating from east-southeast to west-northwest not only modulated the Es layer but also significantly disturbed the Es layer. Interferometry analysis indicates that the plasma structures associated with gravity wave propagation were in clumpy or plume-like structures, while those not disturbed by the gravity waves were in a thin layer structure that descended over time at a rate of about 2.17 km/h. Observation reveals that the height of a thin Es layer with a thickness of about 2–4 km can be severely modulated by the gravity wave with a height as large as 10 km or more. Moreover, sharply inclined plume-like plasma irregularities with a tilted angle of about 55° or more with respect to the zonal direction were observed. In addition, concave and convex shapes of the Es layer caused by the gravity wave modulations were also found. Some of the wave-generated electric fields were so intense that the corresponding E × B drift velocities of the 3 m Es FAIs approximated 90 m s−1. Most interestingly, sharp Doppler velocity shear as large as 68 m/s/km of the Es FAIs at a height of around 108 km, which bore a strong association with the result of the gravity wave propagation, was provided. The plausible mechanisms responsible for this tremendously large Doppler velocity shear are discussed. Full article
(This article belongs to the Section Upper Atmosphere)
Show Figures

Figure 1

14 pages, 4351 KB  
Technical Note
High-Resolution Observation of Ionospheric E-Layer Irregularities Using Multi-Frequency Range Imaging Technology
by Bo Chen, Yi Liu, Jian Feng, Yuqiang Zhang, Yufeng Zhou, Chen Zhou and Zhengyu Zhao
Remote Sens. 2023, 15(1), 285; https://doi.org/10.3390/rs15010285 - 3 Jan 2023
Cited by 2 | Viewed by 3055
Abstract
E-region field-aligned irregularities (FAIs) are a hot topic in space research, since electromagnetic signal propagation through ionospheric irregularities can undergo sporadic enhancements and fading known as ionospheric scintillation, which could severely affect communication, navigation, and radar systems. However, the range resolution of very-high-frequency [...] Read more.
E-region field-aligned irregularities (FAIs) are a hot topic in space research, since electromagnetic signal propagation through ionospheric irregularities can undergo sporadic enhancements and fading known as ionospheric scintillation, which could severely affect communication, navigation, and radar systems. However, the range resolution of very-high-frequency (VHF) radars, which is widely used to observe E-region FAIs, is limited due to its bandwidth. As a technology that is widely used in atmosphere radars to improve the range resolution of pulsed radars by transmitting multiple frequencies, this paper employed the multifrequency radar imaging (RIM) technique in a Wuhan VHF radar. The results showed that the range resolution of E-region FAIs greatly improved when compared with the results in traditional single-frequency mode, and that finer structures of E-region FAIs can be obtained. Specifically, the imaging results in multifrequency mode show that E-region FAIs demonstrate an overall descending trend at night, and it could be related to the tides or gravity waves due to their downward phase velocities or even driven by downwind shear. In addition, typical quasi-periodic (QP) echoes with a time period of around 10 min could be clearly seen using the RIM technique, and the features of the echoes suggest that they could be modulated by gravity waves. Furthermore, the RIM technique can be used to obtain the fine structure of irregularities within a short time period, and the hierarchical structure of E-region FAIs can be easily found. Therefore, the multifrequency imaging RIM technique is suitable for observing E-region FAIs and their evolution, as well as for identifying the different layers of E-region FAIs. Combined with the RIM technique, a VHF radar provides an effective and promising way to observe the structure of E-region FAIs in more detail to study the physical mechanism behind the formation and evolution of ionospheric E-region irregularities. Full article
(This article belongs to the Special Issue Ionosphere Monitoring with Remote Sensing II)
Show Figures

Graphical abstract

15 pages, 2763 KB  
Article
Variability of Equatorial Ionospheric Bubbles over Planetary Scale: Assessment of Terrestrial Drivers
by Lalit Mohan Joshi, Lung-Chih Tsai, Shin-Yi Su and Abhijit Dey
Atmosphere 2022, 13(9), 1517; https://doi.org/10.3390/atmos13091517 - 17 Sep 2022
Viewed by 2651
Abstract
Nighttime F-region field-aligned irregularities (FAIs) associated with equatorial plasma bubbles (EPBs) are impacted by terrestrial factors, such as solar irradiance and geomagnetic activity. This paper examines the impact of the planetary-scale periodic variability of terrestrial processes on EPB activity. Continual observations of the [...] Read more.
Nighttime F-region field-aligned irregularities (FAIs) associated with equatorial plasma bubbles (EPBs) are impacted by terrestrial factors, such as solar irradiance and geomagnetic activity. This paper examines the impact of the planetary-scale periodic variability of terrestrial processes on EPB activity. Continual observations of the Equatorial Atmosphere Radar (EAR) have been utilized to derive the intra-seasonal variability of nighttime F-region FAIs in the context of the terrestrial factors mentioned above. A periodicity analysis using wavelet and Lomb–Scargle (LS) spectral analysis indicated significant amplitudes of the long-period planetary-scale variability in the F-region FAI signal-to-noise ratio (SNR), 10.7 cm flux, and geomagnetic indices, as well as a shorter period of variability. Interestingly, a careful inspection of the time series indicated the planetary-scale variability of F-region FAIs to be reasonably out of phase with the periodic geomagnetic variability. EPB occurrence and the FAI signal-to-noise ratio presented a systematic decrease with an increase in the level of geomagnetic activity. Non-transient quiet-time geomagnetic activity has been found to suppress both the occurrence as well as the strength of F-region FAIs. The impacts of planetary-scale geomagnetic activity appear to be non-identical in the summer and equinoctial EPBs. The results highlight the importance of periodic terrestrial processes in driving the planetary-scale variability of EPBs. Full article
(This article belongs to the Special Issue Monitoring and Forecasting of Ionospheric Space Weather)
Show Figures

Figure 1

18 pages, 34990 KB  
Article
Measurement of Aspect Angle of Field-Aligned Plasma Irregularities in Mid-Latitude E Region Using VHF Atmospheric Radar Imaging and Interferometry Techniques
by Jenn-Shyong Chen, Chien-Ya Wang and Yen-Hsyang Chu
Remote Sens. 2022, 14(3), 611; https://doi.org/10.3390/rs14030611 - 27 Jan 2022
Cited by 8 | Viewed by 2991
Abstract
Multireceiver and multifrequency radar imaging were carried out with the 46.5 MHz MU radar in Japan (34.85°N and 136.10°E) to examine the aspect sensitivity of field-aligned plasma irregularities (FAIs) in the mid-latitude ionosphere E region. A radar beam was directed to geographic north [...] Read more.
Multireceiver and multifrequency radar imaging were carried out with the 46.5 MHz MU radar in Japan (34.85°N and 136.10°E) to examine the aspect sensitivity of field-aligned plasma irregularities (FAIs) in the mid-latitude ionosphere E region. A radar beam was directed to geographic north and at 51° zenith angle, which was normal to the geomagnetic field line around 100 km height. Nineteen receivers and five carrier frequencies were used for radar imaging to retrieve the power distribution in the radar volume, and then the aspect angle along the geomagnetic field line was calculated according to the angular power distribution. Retrieval algorithms such as Fourier, Capon, and norm-constrained Capon (NC-Capon) were employed, in which the NC-Capon was applied to FAIs for the first time and found to be more suitable for the present study. The aspect angles estimated by the NC-Capon ranged between 0.1° and 0.4° mostly, and averaged around 0.2°, which were the same order to the previous measurements with radar interferometry (RI), made for equatorial electrojet irregularities and the lower mid-latitude sporadic E region. For comparison, RI-estimated aspect angles were also investigated and found to be close to that of NC-Capon, but distributed over a wider extent of angles. Full article
(This article belongs to the Special Issue Ionosphere Monitoring with Remote Sensing)
Show Figures

Figure 1

11 pages, 4763 KB  
Communication
E-Region Field-Aligned Irregularities in the Middle of a Solar Eclipse Observed by a Bistatic Radar
by Lei Qiao, Gang Chen, Wanlin Gong, Xuesi Cai, Erxiao Liu, Mingkun Su, Xuyang Teng, Zhaoyang Qiu and Huina Song
Remote Sens. 2022, 14(2), 392; https://doi.org/10.3390/rs14020392 - 15 Jan 2022
Cited by 4 | Viewed by 2367
Abstract
The Wuhan Ionospheric Oblique Backscatter Sounding System (WIOBSS) was applied as a bistatic radar to record the ionospheric E-region responses to a solar eclipse on 22 July 2009. The transmitter was located in Wuhan and the receiver was located in Huaian. The receiver [...] Read more.
The Wuhan Ionospheric Oblique Backscatter Sounding System (WIOBSS) was applied as a bistatic radar to record the ionospheric E-region responses to a solar eclipse on 22 July 2009. The transmitter was located in Wuhan and the receiver was located in Huaian. The receiver observed anomalous echoes with larger Doppler shifts at the farther ranges compared with the echoes reflected by Es. According to the simulated ray propagation paths of the reflected and scattered waves, we considered that the anomalous echoes were scattered by E-region field-aligned irregularities (FAIs). The locations of the FAIs recorded by the WIOBSS were estimated with the International Geomagnetic Reference Field (IGRF) and the observed propagation parameters. These irregularities occurred at around the eclipse maximum and lasted for ~20–40 min. The steep plasma density gradient induced by the fast drop photo ionization under the lunar shadow was beneficial to the occurrence of gradient drift instability to generate the FAIs. They were different from the gravity wave-induced irregularities occurring in the recovery phase of the solar eclipse. Full article
Show Figures

Figure 1

10 pages, 2789 KB  
Article
Observations of Quasi-Periodic Electric Field Disturbances in the E Region before and during the Equatorial Plasma Bubble
by Esfhan A. Kherani and Eurico R. de Paula
Atmosphere 2021, 12(9), 1106; https://doi.org/10.3390/atmos12091106 - 27 Aug 2021
Cited by 1 | Viewed by 2279
Abstract
Wave-like electric field disturbances in the ionosphere before the Equatorial Plasma Bubble (EPB) are the subject of numerous recent studies that address the issue of possible short-term forecasting of EPB. We report the observations of the Equatorial Quasi-Periodic-Electric field Disturbances (QP-EDs) of the [...] Read more.
Wave-like electric field disturbances in the ionosphere before the Equatorial Plasma Bubble (EPB) are the subject of numerous recent studies that address the issue of possible short-term forecasting of EPB. We report the observations of the Equatorial Quasi-Periodic-Electric field Disturbances (QP-EDs) of the Field-aligned Irregularities (FAI) in the E region before the EPB occurrence in the F region. They are observed from 30 MHz coherent scatter radar during the SpreadFEx campaign 2005 carried out in Brasil. The presently reported QP-EDs at the equatorial E region below an altitude of 110 km are undescribed so far. Though QP-EDs characteristics vary on a day-to-day basis, consistent features are their intensification before the EPB, and their simultaneous occurrence with EPBs. This study highlights the monitoring of QP-EDs in the short-term forecasting of EPBs and further reveals the robust energetics of vertical coupling between E and F regions. Full article
(This article belongs to the Special Issue Dynamical and Chemical Processes of Atmosphere-Ionosphere Coupling)
Show Figures

Figure 1

Back to TopTop