Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline

Search Results (1)

Search Parameters:
Keywords = ferric leghaemoglobin reductases

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 5135 KiB  
Article
Interaction Between Nitric Oxide and Silicon on Leghaemoglobin and S-Nitrosothiol Levels in Soybean Nodules
by Da-Sol Lee, Ashim Kumar Das, Nusrat Jahan Methela and Byung-Wook Yun
Biomolecules 2024, 14(11), 1417; https://doi.org/10.3390/biom14111417 - 7 Nov 2024
Cited by 1 | Viewed by 1405
Abstract
Nitrogen fixation in legume nodules is crucial for plant growth and development. Therefore, this study aims to investigate the effects of nitric oxide [S-nitrosoglutathione (GSNO)] and silicon [sodium metasilicate (Si)], both individually and in combination, on soybean growth, nodule formation, leghaemoglobin (Lb) synthesis, [...] Read more.
Nitrogen fixation in legume nodules is crucial for plant growth and development. Therefore, this study aims to investigate the effects of nitric oxide [S-nitrosoglutathione (GSNO)] and silicon [sodium metasilicate (Si)], both individually and in combination, on soybean growth, nodule formation, leghaemoglobin (Lb) synthesis, and potential post-translational modifications. At the V1 stage, soybean plants were treated for 2 weeks with 150 µM GSNO, and Si at concentrations of 1 mM, 2 mM, and 4 mM. The results showed that NO and Si enhance the nodulation process by increasing phenylalanine ammonia-lyase activity and Nod factors (NIP2-1), attracting rhizobia and accelerating nodule formation. This leads to a greater number and larger diameter of nodules. Individually, NO and Si support the synthesis of Lb and leghaemoglobin protein (Lba) expression, ferric leghaemoglobin reductases (FLbRs), and S-nitrosoglutathione reductase (GSNOR). However, when used in combination, NO and Si inhibit these processes, leading to elevated levels of S-nitrosothiols in the roots and nodules. This combined inhibition may potentially induce post-translational modifications in FLbRs, pivotal for the reduction of Lb3+ to Lb2+. These findings underscore the critical role of NO and Si in the nodulation process and provide insight into their combined effects on this essential plant function. Full article
(This article belongs to the Special Issue Nitrogen Signaling, Transport, and Function in Plants)
Show Figures

Figure 1

Back to TopTop