Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = extended comparative linguistic expression with symbolic translation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3593 KB  
Article
An Improved Laplacian Gravity Centrality-Based Consensus Method for Social Network Group Decision-Making with Incomplete ELICIT Information
by Jinjing Mao, Xiangjie Gou and Zhen Hua
Mathematics 2024, 12(13), 2013; https://doi.org/10.3390/math12132013 - 28 Jun 2024
Cited by 1 | Viewed by 1288
Abstract
With the advancement of information technology, social media has become increasingly prevalent. The complex networks of social relationships among decision-makers (DMs) have given rise to the problem of social network group decision-making (SNGDM), which has garnered considerable attention in recent years. However, most [...] Read more.
With the advancement of information technology, social media has become increasingly prevalent. The complex networks of social relationships among decision-makers (DMs) have given rise to the problem of social network group decision-making (SNGDM), which has garnered considerable attention in recent years. However, most existing consensus-reaching methods in SNGDM only consider local network information when determining the influence of DMs within the social network. This approach fails to adequately reflect the crucial role of key DMs in regulating information propagation during the consensus-reaching process. Additionally, the partial absence of linguistic evaluations in the decision-making problems also poses obstacles to identifying the optimal alternative. Therefore, this paper proposes an improved Laplacian gravity centrality-based consensus method that can effectively handle incomplete decision information in social network environments. First, the extended comparative linguistic expressions with symbolic translation (ELICIT) are utilized to describe DMs’ linguistic evaluations and construct the incomplete decision matrix. Second, the improved Laplacian gravity centrality (ILGC) is proposed to quantify the influence of DMs in the social network by considering local and global topological structures. Based on the ILGC measure, we develop a trust-driven consensus-reaching model to enhance group consensus, which can better simulate opinion interactions in real-world situations. Lastly, we apply the proposed method to a smart city evaluation problem. The results show that our method can more reasonably handle incomplete linguistic evaluations, more comprehensively capture the influence of DMs, and more effectively improve group consensus. Full article
Show Figures

Figure 1

35 pages, 543 KB  
Article
Induced OWA Operator for Group Decision Making Dealing with Extended Comparative Linguistic Expressions with Symbolic Translation
by Wen He, Bapi Dutta, Rosa M. Rodríguez, Ahmad A. Alzahrani and Luis Martínez
Mathematics 2021, 9(1), 20; https://doi.org/10.3390/math9010020 - 23 Dec 2020
Cited by 17 | Viewed by 2703
Abstract
Nowadays, decision making problems have increased their complexity and a single decision maker cannot handle these problems, with a more diverse and comprehensive view of them being necessary, which results in group decision making (GDM) schemes. The complexity of GDM problems is often [...] Read more.
Nowadays, decision making problems have increased their complexity and a single decision maker cannot handle these problems, with a more diverse and comprehensive view of them being necessary, which results in group decision making (GDM) schemes. The complexity of GDM problems is often due to their inherent uncertainty that is not solved just by using a group. Consequently, different methodologies has been proposed to handle it, in which, the use of the fuzzy linguistic approach stands out. Among the multiple fuzzy linguistic modeling approaches, Extended Comparative Linguistic Expressions with Symbolic Translation (ELICIT) information has been recently introduced, which enhances classical linguistic modeling that is based on single terms by providing linguistic expressions in a continuous linguistic domain. Its application to decision making is quite promising, but it is necessary to develop enough operators to accomplish aggregation processes in the decision solving scheme. So far, just a small number of aggregation operators have been defined for ELICIT information. Hence, this paper aims at providing new aggregation operators for ELICIT information by developing novel OWA based operators, such as the Induced OWA (IOWA) operator in order to avoid the OWA operator needs of reordering its arguments, because ELICIT information does not have an inherent order due to its fuzzy representation. Our proposal not only consists of extending the definition of an IOWA operator for ELICIT information with crisp weights, but it is also proposed a type-1 IOWA operator for ELICIT information in which both weights and arguments are fuzzy as well as the use of ELICIT information constructing the order inducing variable to reorder the arguments. Additionally, the use of ELICIT information in GDM demands the ability to manage majority based decisions that are better represented in the IOWA operator by linguistic quantifiers. Hence, a majority-driven GDM process for ELICIT information is proposed, which it is the first proposal for fulfilling the majority solving process for GDM while using ELICIT information. Eventually, an illustrative example and a brief comparative analysis are presented in order to show the performance of the proposal and its feasibility. Full article
(This article belongs to the Special Issue Fuzzy Sets and Soft Computing)
Show Figures

Figure 1

22 pages, 2617 KB  
Article
A Consensus Model for Extended Comparative Linguistic Expressions with Symbolic Translation
by Álvaro Labella, Rosa M. Rodríguez, Ahmad A. Alzahrani and Luis Martínez
Mathematics 2020, 8(12), 2198; https://doi.org/10.3390/math8122198 - 10 Dec 2020
Cited by 7 | Viewed by 2642
Abstract
Consensus Reaching Process (CRP) is a necessary process to achieve agreed solutions in group decision making (GDM) problems. Usually, these problems are defined in uncertain contexts, in which experts do not have a full and precise knowledge about all aspects of the problem. [...] Read more.
Consensus Reaching Process (CRP) is a necessary process to achieve agreed solutions in group decision making (GDM) problems. Usually, these problems are defined in uncertain contexts, in which experts do not have a full and precise knowledge about all aspects of the problem. In real-world GDM problems under uncertainty, it is usual that experts express their preferences by using linguistic expressions. Consequently, different methodologies have modelled linguistic information, in which computing with words stands out and whose basis is the fuzzy linguistic approach and their extensions. Even though, multiple consensus approaches under fuzzy linguistic environments have been proposed in the specialized literature, there are still some areas where their performance must be improved because of several persistent drawbacks. The drawbacks include the use of single linguistic terms that are not always enough to model the uncertainty in experts’ knowledge or the oversimplification of fuzzy information during the computational processes by defuzzification processes into crisp values, which usually implies a loss of information and precision in the results and also a lack of interpretability. Therefore, to improving the effects of previous drawbacks, this paper aims at presenting a novel CRP for GDM problems dealing with Extended Comparative Linguistic Expressions with Symbolic Translation (ELICIT) for modelling experts’ linguistic preferences. Such a CRP will overcome previous limitations because ELICIT information allows both fuzzy modelling of the experts’ uncertainty including hesitancy and performs comprehensive fuzzy computations to, ultimately, obtain precise and understandable linguistic results. Additionally, the proposed CRP model is implemented and integrated into the CRP support system so-called A FRamework for the analYsis of Consensus Approaches (AFRYCA) 3.0 that facilitates the application of the proposed CRP and its comparison with previous models. Full article
(This article belongs to the Special Issue Fuzzy Sets and Soft Computing)
Show Figures

Figure 1

Back to TopTop