Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = europium(III) hydroxide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 6393 KiB  
Article
Microwave-Assisted Rapid Synthesis of Eu(OH)3/RGO Nanocomposites and Enhancement of Their Antibacterial Activity against Escherichia coli
by Kun-Yauh Shih and Shiou-Ching Yu
Materials 2022, 15(1), 43; https://doi.org/10.3390/ma15010043 - 22 Dec 2021
Cited by 12 | Viewed by 3474
Abstract
Nanomaterials with high antibacterial activity and low cytotoxicity have attracted extensive attention from scientists. In this study, europium (III) hydroxide (Eu(OH)3)/reduced graphene oxide (RGO) nanocomposites were synthesized using a rapid, one-step method, and their antibacterial activity against Escherichia coli (E. [...] Read more.
Nanomaterials with high antibacterial activity and low cytotoxicity have attracted extensive attention from scientists. In this study, europium (III) hydroxide (Eu(OH)3)/reduced graphene oxide (RGO) nanocomposites were synthesized using a rapid, one-step method, and their antibacterial activity against Escherichia coli (E. coli) was investigated using the synergistic effect of the antibacterial activity between Eu and graphene oxide (GO). The Eu(OH)3/RGO nanocomposites were prepared using a microwave-assisted synthesis method and characterized using X-ray diffraction, scanning electron microscopy, photoluminescence spectroscopy, Raman spectroscopy, and Fourier-transform infrared spectroscopy. Raman sprectroscopy and X-ray diffraction confirmed the pure hexagonal phase structure of the nanocomposites. Further, the antibacterial properties of Eu(OH)3/RGO were investigated using the minimum inhibitory concentration assay, colony counting method, inhibition zone diameter, and optical density measurements. The results revealed that the Eu(OH)3/RGO exhibited a superior inhibition effect against E. coli and a larger inhibition zone diameter compared to RGO and Eu(OH)3. Further, the reusability test revealed that Eu(OH)3/RGO nanocomposite retained above 98% of its bacterial inhibition effect after seven consecutive applications. The high antibacterial activity of the Eu(OH)3/RGO nanocomposite could be attributed to the release of Eu3+ ions from the nanocomposite and the sharp edge of RGO. These results indicated the potential bactericidal applications of the Eu(OH)3/RGO nanocomposite. Full article
Show Figures

Figure 1

Back to TopTop