Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline

Search Results (1)

Search Parameters:
Keywords = ethyl-methyl-triazolium salts

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2436 KiB  
Article
Synthesis and Physical and Chemical Properties of Hypergolic Chemicals such as N,N,N-Trimethylhydrazinium and 1-Ethyl-4-Methyl-1,2,4-Triazolium Salts
by Young-Seok Kim, Gi-Hyuk Son, Tae-Kyung Na and Seong-Ho Choi
Appl. Sci. 2015, 5(4), 1547-1559; https://doi.org/10.3390/app5041547 - 2 Dec 2015
Cited by 10 | Viewed by 5704
Abstract
Hypergolic chemicals N,N,N-trimethylhydrazinium iodide, [TMH]+[I], and 1-ethyl-4-methyl-1,2,4-triazolium iodide, [EMT]+[I] were firstly synthesized by nucleophilic substitution (SN2). The successful synthesis of hypergolic chemicals [TMH]+[I] and [EMT]+ [...] Read more.
Hypergolic chemicals N,N,N-trimethylhydrazinium iodide, [TMH]+[I], and 1-ethyl-4-methyl-1,2,4-triazolium iodide, [EMT]+[I] were firstly synthesized by nucleophilic substitution (SN2). The successful synthesis of hypergolic chemicals [TMH]+[I] and [EMT]+[I] was confirmed by IR and 1H-NMR spectroscopy and, GC-mass spectrometry. Subsequently the hypergolic chemicals [TMH]+[X] (X = CN, N3, NO3, NO2, ClO4, AlCl4) were prepared via an ion exchange reaction from [TMH]+[I] and [EMT]+[I], respectively. After that, a mixture of hypergolic chemicals was prepared by dissolving the synthesized hypergolic chemicals in 2-hydroxyethylhydrazine (HOCH2CH2NHNH2). The physical and chemical properties of the mixture such as decomposition temperature (Td), density (d), viscosity (η), and decomposition energy (ΔHd) was then evaluated to determine suitability for use as liquid rocket fuels. The ignition delay (ID) time of the mixture of hypergolic chemicals with [TMH]+[N3] and [TMH]+[CN] using H2O2 as an oxidizer was determined as 55.6 ms and 97.4 ms; respectively. The ID time of the mixture of hypergolic chemicals with [EMT]+[N3]; [EMT]+[CN]; [EMT]+[AlCl4]; and [EMT]+[I] using H2O2 as an oxidizer was also determined as 18.0 ms; 32.6 ms; 27.6 ms; and 7.96 ms; respectively. The synthesized mixture of hypergolic chemicals could thus be used as a rocket propellant liquid fuel. Full article
Show Figures

Figure 1

Back to TopTop