Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = esomeprazole sodium

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2113 KiB  
Article
Fabrication of Polymeric Hydrogels Containing Esomeprazole for Oral Delivery: In Vitro and In Vivo Pharmacokinetic Characterization
by Irshad Ullah, Ayesha Shuja Farooq, Iffat Naz, Waqar Ahmad, Hidayat Ullah, Shama Sehar and Asif Nawaz
Polymers 2023, 15(7), 1798; https://doi.org/10.3390/polym15071798 - 6 Apr 2023
Cited by 5 | Viewed by 2785
Abstract
Hydrogel is one of the most interesting and excellent candidates for oral drug delivery. The current study focuses on formulation development of hydrogels for controlled oral delivery of esomeprazole. The hydrogels were prepared by solution casting method by dissolving polymers in Polyvinyl alcohol [...] Read more.
Hydrogel is one of the most interesting and excellent candidates for oral drug delivery. The current study focuses on formulation development of hydrogels for controlled oral delivery of esomeprazole. The hydrogels were prepared by solution casting method by dissolving polymers in Polyvinyl alcohol (PVA) solution. Calcium alginate, Hydroxyl propyl methylcellulose (HPMC), acrylic acid and chondroitin sulfate were used in the preparation of hydrogels. Fourier transform infrared (FTIR) analysis showed no incompatibilities between drug and excipients used in the preparation of formulations. The hydrogels were characterized for size and surface morphology. Drug encapsulation efficiency was measured by Ultraviolet-visible (UV-VIS) spectroscopy. In vitro release studies were carried out using dissolution apparatus. The formulated hydrogels were then compared with the marketed product in vivo using rabbits. The result indicates that prepared hydrogels have a uniform size with a porous surface. The esomeprazole encapsulation efficiency of the prepared hydrogels was found to be 83.1 ± 2.16%. The esomeprazole-loaded hydrogel formulations showed optimum and Pharmacopeial acceptable range swelling behavior. The release of esomeprazole is controlled for 24 h (85.43 ± 0.32% in 24 h). The swelling and release of drug results make the prepared hydrogels a potential candidate for the controlled delivery of esomeprazole. The release of the drug from prepared hydrogel followed the super case transport-2 mechanism. The in vivo studies showed that prepared hydrogel formulations showed controlled and prolonged release of esomeprazole as compared to drug solution and marketed product. The formulations were kept for stability studies; there was no significant change observed in physical parameters, i.e., (appearance, color change and grittiness) at 40 °C ± 2/75% ± RH. There was a negligible difference in the drug content observed after the stability study suggested that all the formulations are stable under the given conditions for 60 days. The current study provides a valuable perspective on the controlled release profile of Hydroxyl propyl methylcellulose (HPMC) and calcium alginate-based esomeprazole hydrogels. Full article
Show Figures

Figure 1

12 pages, 1466 KiB  
Article
Assessment of the Proton Pump Inhibitor, Esomeprazole Magnesium Hydrate and Trihydrate, on Pathophysiological Markers of Preeclampsia in Preclinical Human Models of Disease
by Natasha de Alwis, Bianca R. Fato, Sally Beard, Natalie K. Binder, Tu’uhevaha J. Kaitu’u-Lino, Kenji Onda and Natalie J. Hannan
Int. J. Mol. Sci. 2022, 23(17), 9533; https://doi.org/10.3390/ijms23179533 - 23 Aug 2022
Cited by 6 | Viewed by 3064
Abstract
Previously, we demonstrated that the proton pump inhibitor, esomeprazole magnesium hydrate (MH), could have potential as a repurposed treatment against preeclampsia, a serious obstetric condition. In this study we investigate the difference in the preclinical effectiveness between 100 µM of esomeprazole MH and [...] Read more.
Previously, we demonstrated that the proton pump inhibitor, esomeprazole magnesium hydrate (MH), could have potential as a repurposed treatment against preeclampsia, a serious obstetric condition. In this study we investigate the difference in the preclinical effectiveness between 100 µM of esomeprazole MH and its hydration isomer, esomeprazole magnesium trihydrate (MTH). Here, we found that both treatments reduced secretion of sFLT-1 (anti-angiogenic factor) from primary cytotrophoblast, but only esomeprazole MH reduced sFLT-1 secretion from primary human umbilical vein endothelial cells (assessed via ELISA). Both drugs could mitigate expression of the endothelial dysfunction markers, vascular cell adhesion molecule-1 and endothelin-1 (via qPCR). Neither esomeprazole MH nor MTH quenched cytotrophoblast reactive oxygen species production in response to sodium azide (ROS assay). Finally, using wire myography, we demonstrated that both compounds were able to induce vasodilation of human omental arteries at 100 µM. Esomeprazole is safe to use in pregnancy and a candidate treatment for preeclampsia. Using primary human tissues and cells, we validated that esomeprazole is effective in enhancing vascular relaxation, and can reduce key factors associated with preeclampsia, including sFLT-1 and endothelial dysfunction. However, esomeprazole MH was more efficacious than esomeprazole MTH in our in vitro studies. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Endothelial Dysfunction)
Show Figures

Figure 1

21 pages, 12481 KiB  
Article
Prediction of Drug Stability Using Deep Learning Approach: Case Study of Esomeprazole 40 mg Freeze-Dried Powder for Solution
by Jovana Ajdarić, Svetlana Ibrić, Aleksandar Pavlović, Ljubiša Ignjatović and Branka Ivković
Pharmaceutics 2021, 13(6), 829; https://doi.org/10.3390/pharmaceutics13060829 - 3 Jun 2021
Cited by 7 | Viewed by 5409
Abstract
A critical step in the production of Esomeprazole powder for solution is a period between the filling process and lyophilization, where all vials, partially closed, are completely exposed to environmental influences. Excessive instability reflects in pH value variations caused by oxygen’s impact. In [...] Read more.
A critical step in the production of Esomeprazole powder for solution is a period between the filling process and lyophilization, where all vials, partially closed, are completely exposed to environmental influences. Excessive instability reflects in pH value variations caused by oxygen’s impact. In order to provide pH control, which consequently affects drug stability, Esomeprazole batches, produced in the same way, were kept in partially closed vials for 3 h at temperatures of 20 °C and −30 °C, after which they were lyophilized and stored for long-term stability for 36 months. The aim of the presented study was to apply a deep-learning algorithm for the prediction of the Esomeprazole stability profile and to determine the pH limit for the reconstituted solution of the final freeze-dried product that would assure a quality product profile over a storage period of 36 months. Multilayer perceptron (MLP) as a deep learning tool, with four layers, was used. The pH value of Esomeprazole solution and time of storage (months) were inputs for the network, while Esomeprazole assay and four main impurities were outputs of the network. In order to keep all related substances and Esomeprazole assay in accordance with specifications for the whole shelf life, the pH value for the reconstituted finish product should be set in the range of 10.4–10.6. Full article
(This article belongs to the Special Issue Drug Stability and Stabilization Techniques Volume II)
Show Figures

Figure 1

Back to TopTop