Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = erdaohezi Pb–Zn polymetallic deposit

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 51610 KB  
Article
Geochronology, Geochemistry, and Pb–Hf Isotopic Composition of Mineralization-Related Magmatic Rocks in the Erdaohezi Pb–Zn Polymetallic Deposit, Great Xing’an Range, Northeast China
by Zhitao Xu, Jinggui Sun, Xiaolong Liang, Zhikai Xu and Xiaolei Chu
Minerals 2020, 10(3), 274; https://doi.org/10.3390/min10030274 - 18 Mar 2020
Cited by 8 | Viewed by 4328
Abstract
Late Mesozoic intermediate–felsic volcanics and hypabyssal intrusions are common across the western slope of the Great Xing’an Range (GXAR). Spatiotemporally, these hypabyssal intrusions are closely associated with epithermal Pb–Zn polymetallic deposits. However, few studies have investigated the petrogenesis, contributions and constraints of these [...] Read more.
Late Mesozoic intermediate–felsic volcanics and hypabyssal intrusions are common across the western slope of the Great Xing’an Range (GXAR). Spatiotemporally, these hypabyssal intrusions are closely associated with epithermal Pb–Zn polymetallic deposits. However, few studies have investigated the petrogenesis, contributions and constraints of these Pb–Zn polymetallic mineralization-related intrusions. Therefore, we examine the representative Erdaohezi deposit and show that these mineralization-related hypabyssal intrusions are composed of quartz porphyry and andesite porphyry with concordant zircon U–Pb ages of 160.3 ± 1.4 Ma and 133.9 ± 0.9 Ma, respectively. These intrusions are peraluminous and high-K calc-alkaline or shoshonitic with high Na2O + K2O contents, enrichment in large ion lithophile elements (LILEs; e.g., Rb, Th, and U), and depletion in high field strength elements (HFSEs; e.g., Nb, Ta, Zr, and Hf), similar to continental arc intrusions. The zircon εHf(t) values range from 3.1 to 8.0, and the 176Hf/177Hf values range from 0.282780 to 0.282886, with Hf-based Mesoproterozoic TDM2 ages. No differences exist in the Pb isotope ratios among the quartz porphyry, andesite porphyry and ore body sulfide minerals. Detailed elemental and isotopic data imply that the quartz porphyry originated from a mixture of lower crust and newly underplated basaltic crust, while the andesite porphyry formed from the partial melting of Mesoproterozoic lower crust with the minor input of mantle materials. Furthermore, a magmatic–hydrothermal origin is favored for the Pb–Zn polymetallic mineralization in the Erdaohezi deposit. Integrating new and published tectonic evolution data, we suggest that the polymetallic mineralization-related magmatism in the Erdaohezi deposit occurred in a back-arc extensional environment at ~133 Ma in response to the rollback of the Paleo-Pacific Plate. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

Back to TopTop