Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = equation of autoinhibition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2066 KiB  
Article
Simple and Precise Description of the Transformation Kinetics and Final Structure of Dual Phase Steels
by Jan Kohout
Materials 2021, 14(7), 1781; https://doi.org/10.3390/ma14071781 - 4 Apr 2021
Cited by 4 | Viewed by 2483
Abstract
The kinetics of diffusion-dependent phase transformations (including austenitisation of ferrite in dual steels or ferritic nodular cast irons) is very often described by the Johnson–Mehl–Avrami–Kolmogorov (JMAK) equation. This description is not complete when the conversion is only partial due to insufficient overheating, as [...] Read more.
The kinetics of diffusion-dependent phase transformations (including austenitisation of ferrite in dual steels or ferritic nodular cast irons) is very often described by the Johnson–Mehl–Avrami–Kolmogorov (JMAK) equation. This description is not complete when the conversion is only partial due to insufficient overheating, as the equilibrium fraction of ferrite transformed into austenite cannot be determined directly from the JMAK equation. Experimental kinetic curves of partial austenitisation at various temperatures can be fitted using the JMAK equation, but the equilibrium fraction of the newly formed phase for each temperature has to be calculated as a regression parameter. In addition, the temperature dependence of the kinetic exponent in the JMAK equation is quite complicated and cannot be expressed by a simple general function. On the contrary, the equation of autoinhibition used for the description of austenitisation kinetics in present work directly gives the equilibrium fraction at partial conversion. It describes transformation kinetics at various temperatures independently of whether the conversion is complete or partial. Rate constants of the equation of autoinhibition depend on temperature according to the Arrhenius equation. In addition, the equation of autoinhibition has no weakness as the JMAK equation has, which consists in questionable temperature dependence of kinetic exponent. Full article
(This article belongs to the Special Issue Phase Transformation and Properties of Metals and Alloys)
Show Figures

Figure 1

Back to TopTop