Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = endotype xanthanase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 24865 KiB  
Article
An Insight into the Essential Role of Carbohydrate-Binding Modules in Enzymolysis of Xanthan
by Xin Ni, Tong Fu, Xueyan Wang, Jingjing Zhao, Zhimin Yu, Xianzhen Li and Fan Yang
Int. J. Mol. Sci. 2023, 24(6), 5480; https://doi.org/10.3390/ijms24065480 - 13 Mar 2023
Cited by 4 | Viewed by 2015
Abstract
To date, due to the low accessibility of enzymes to xanthan substrates, the enzymolysis of xanthan remains deficient, which hinders the industrial production of functional oligoxanthan. To enhance the enzymatic affinity against xanthan, the essential role of two carbohydrate binding modules—MiCBMx [...] Read more.
To date, due to the low accessibility of enzymes to xanthan substrates, the enzymolysis of xanthan remains deficient, which hinders the industrial production of functional oligoxanthan. To enhance the enzymatic affinity against xanthan, the essential role of two carbohydrate binding modules—MiCBMx and PspCBM84, respectively, derived from Microbacterium sp. XT11 and Paenibacillus sp. 62047—in catalytic properties of endotype xanthanase MiXen were investigated for the first time. Basic characterizations and kinetic parameters of different recombinants revealed that, compared with MiCBMx, PspCBM84 dramatically increased the thermostability of endotype xanthanase, and endowed the enzyme with higher substrate affinity and catalytic efficiency. Notably, the activity of endotype xanthanase was increased by 16 times after being fused with PspCBM84. In addition, the presence of both CBMs obviously enabled endotype xanthanase to produce more oligoxanthan, and xanthan digests prepared by MiXen-CBM84 showed better antioxidant activity due to the higher content of active oligosaccharides. The results of this work lay a foundation for the rational design of endotype xanthanase and the industrial production of oligoxanthan in the future. Full article
(This article belongs to the Special Issue Microbial Enzymes for Biotechnological Applications)
Show Figures

Graphical abstract

Back to TopTop