Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = encoded chirp acoustic signal

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 9761 KiB  
Article
Robust Indoor Positioning with Smartphone by Utilizing Encoded Chirp Acoustic Signal
by Bingbing Cheng, Ying Huang and Chuanyi Zou
Sensors 2024, 24(19), 6332; https://doi.org/10.3390/s24196332 - 30 Sep 2024
Cited by 2 | Viewed by 1488
Abstract
Recently, indoor positioning has been one of the hot topics in the field of navigation and positioning. Among different solutions on indoor positioning, positioning with acoustic signals has its promise due to its relatively high accuracy in the line of sight scenarios, low [...] Read more.
Recently, indoor positioning has been one of the hot topics in the field of navigation and positioning. Among different solutions on indoor positioning, positioning with acoustic signals has its promise due to its relatively high accuracy in the line of sight scenarios, low cost, and ease of being implemented in smartphones. In this work, a novel acoustic positioning method, called RATBILS, is proposed, in which encoded chirp acoustic signals are modulated and transmitted by different acoustic base stations. The smartphones receive the signals and perform the following three steps: (1) preprocessing; (2) time of arrival (TOA) estimation; and (3) time difference of arrival (TDOA) calculation and location estimation. In the preprocessing stage, we use band pass filters to filter out low-frequency noise from the environment. At the same time, we perform a signal decoding function in order to lock onto the positioning source. In the TOA estimation stage, we conduct both coarse and fine detection to enhance the accuracy and robustness of TOA estimation. The primary goal of coarse detection is to establish a noise range for fine detection. The main objective of fine detection is to emphasize the intensity of the first arrival diameter and resistance with multipath and non-line-of-sight (NLOS) caused by human body obstruction. In the TDOA calculation and location estimation stage, we estimate the TDOA based on the TOA estimation and then use the TDOA results for position estimation. In order to evaluate the performance of the proposed RATBILS system, two indoor field tests are carried out. The test results show that the RATBILS system achieves a positioning error of 0.23 m at 92% in region 1 of scene 1 and is superior to the traditional threshold method. The RATBILS system achieves a positioning error of 0.56 m at 92% in region 2 of scene 1 and is superior to the traditional threshold method. In scene 2, the maximum average positioning error was 1.26 m, which is better than the 3.33 m and 3.87 m of the two traditional threshold methods. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

25 pages, 5191 KiB  
Article
Sonic Watermarking Method for Ensuring the Integrity of Audio Recordings
by Robert-Alexandru Dobre, Radu-Ovidiu Preda and Marian Vlădescu
Appl. Sci. 2020, 10(10), 3367; https://doi.org/10.3390/app10103367 - 13 May 2020
Cited by 2 | Viewed by 3256
Abstract
Methods for inspecting the integrity of audio recordings become a necessity. The evolution of technology allowed the manufacturing of small, performant, recording devices and significantly decreased the difficulty of audio editing. Any person that participates in a conversation can secretly record it, obtaining [...] Read more.
Methods for inspecting the integrity of audio recordings become a necessity. The evolution of technology allowed the manufacturing of small, performant, recording devices and significantly decreased the difficulty of audio editing. Any person that participates in a conversation can secretly record it, obtaining their own version of the audio captured using their personal device. The recordings can be easily edited afterwards to change the meaning of the message. The challenge is to prove if recordings were tampered with or not. A reliable solution for this was the highly acclaimed Electrical Network Frequency (ENF) criterion. Newer recording devices are built to avoid picking up the electrical network signal because, from the audio content point of view, it represents noise. Thus, the classic ENF criterion becomes less effective for recordings made with newer devices. The paper describes a novel sonic watermarking (i.e., the watermark is acoustically summed with the dialogue) solution, based on an ambient sound that can be easily controlled and is not suspicious to listeners: the ticking of a clock. This signal is used as a masker for frequency-swept (chirp) signals that are used to encode the ENF and embed it into all the recordings made in a room. The ENF embedded using the proposed watermark solution can be extracted and checked at any later moment to determine if a recording has been tampered with, thus allowing the use of the ENF criterion principles in checking the recordings made with newer devices. The experiments highlight that the method offers very good results in ordinary real-world conditions. Full article
(This article belongs to the Special Issue Recent Developments on Multimedia Computing and Networking)
Show Figures

Figure 1

Back to TopTop