Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = encephalic glioblastoma

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
61 pages, 1930 KiB  
Systematic Review
Association between the Anatomical Location of Glioblastoma and Its Evaluation with Clinical Considerations: A Systematic Review and Meta-Analysis
by Juan Jose Valenzuela-Fuenzalida, Laura Moyano-Valarezo, Vicente Silva-Bravo, Daniel Milos-Brandenberg, Mathias Orellana-Donoso, Pablo Nova-Baeza, Alejandra Suazo-Santibáñez, Macarena Rodríguez-Luengo, Gustavo Oyanedel-Amaro, Juan Sanchis-Gimeno and Héctor Gutiérrez Espinoza
J. Clin. Med. 2024, 13(12), 3460; https://doi.org/10.3390/jcm13123460 - 13 Jun 2024
Cited by 6 | Viewed by 3077
Abstract
Background: Glioblastoma is a primary malignant brain tumor; it is aggressive with a high degree of malignancy and unfavorable prognosis and is the most common type of malignant brain tumor. Glioblastomas can be located in the brain, cerebellum, brainstem, and spinal cord, originating [...] Read more.
Background: Glioblastoma is a primary malignant brain tumor; it is aggressive with a high degree of malignancy and unfavorable prognosis and is the most common type of malignant brain tumor. Glioblastomas can be located in the brain, cerebellum, brainstem, and spinal cord, originating from glial cells, particularly astrocytes. Methods: The databases MEDLINE, Scopus, Web of Science, Google Scholar, and CINAHL were researched up to January 2024. Two authors independently performed the search, study selection, and data extraction. Methodological quality was evaluated with an assurance tool for anatomical studies (AQUA). The statistical mean, standard deviation, and difference of means calculated with the Student’s t-test for presence between hemispheres and presence in the frontal and temporal lobes were analyzed. Results: A total of 123 studies met the established selection criteria, with a total of 6224 patients. In relation to the mean, GBM between hemispheres had a mean of 33.36 (SD 58.00) in the right hemisphere and a mean of 34.70 (SD 65.07) in the left hemisphere, due to the difference in averages between hemispheres. There were no statistically significant differences, p = 0.35. For the comparison between the presence of GBM in the frontal lobe and the temporal lobe, there was a mean in the frontal lobe of 23.23 (SD 40.03), while in the temporal lobe, the mean was 22.05 (SD 43.50), and for the difference in means between the frontal lobe and the temporal lobe, there was no statistically significant difference for the presence of GBM, p = 0.178. Conclusions: We believe that before a treatment, it will always be correct to know where the GBM is located and how it behaves clinically, in order to generate correct conservative or surgical treatment guidelines for each patient. We believe that more detailed studies are also needed to show why GBM is associated more with some regions than others, despite the brain structure being homologous to other regions in which GMB occurs less frequently, which is why knowing its predominant presence in brain regions is very important. Full article
(This article belongs to the Section Clinical Neurology)
Show Figures

Figure 1

15 pages, 2772 KiB  
Article
An Orthotopic Model of Glioblastoma Is Resistant to Radiodynamic Therapy with 5-AminoLevulinic Acid
by Charles Dupin, Jade Sutter, Samuel Amintas, Marie-Alix Derieppe, Magalie Lalanne, Soule Coulibaly, Joris Guyon, Thomas Daubon, Julian Boutin, Jean-Marc Blouin, Emmanuel Richard, François Moreau-Gaudry, Aurélie Bedel, Véronique Vendrely and Sandrine Dabernat
Cancers 2022, 14(17), 4244; https://doi.org/10.3390/cancers14174244 - 31 Aug 2022
Cited by 9 | Viewed by 2519
Abstract
Radiosensitization of glioblastoma is a major ambition to increase the survival of this incurable cancer. The 5-aminolevulinic acid (5-ALA) is metabolized by the heme biosynthesis pathway. 5-ALA overload leads to the accumulation of the intermediate fluorescent metabolite protoporphyrin IX (PpIX) with a radiosensitization [...] Read more.
Radiosensitization of glioblastoma is a major ambition to increase the survival of this incurable cancer. The 5-aminolevulinic acid (5-ALA) is metabolized by the heme biosynthesis pathway. 5-ALA overload leads to the accumulation of the intermediate fluorescent metabolite protoporphyrin IX (PpIX) with a radiosensitization potential, never tested in a relevant model of glioblastoma. We used a patient-derived tumor cell line grafted orthotopically to create a brain tumor model. We evaluated tumor growth and tumor burden after different regimens of encephalic multifractionated radiation therapy with or without 5-ALA. A fractionation scheme of 5 × 2 Gy three times a week resulted in intermediate survival [48–62 days] compared to 0 Gy (15–24 days), 3 × 2 Gy (41–47 days) and, 5 × 3 Gy (73–83 days). Survival was correlated to tumor growth. Tumor growth and survival were similar after 5 × 2 Gy irradiations, regardless of 5-ALA treatment (RT group (53–67 days), RT+5-ALA group (40–74 days), HR = 1.57, p = 0.24). Spheroid growth and survival were diminished by radiotherapy in vitro, unchanged by 5-ALA pre-treatment, confirming the in vivo results. The analysis of two additional stem-like patient-derived cell lines confirmed the absence of radiosensitization by 5-ALA. Our study shows for the first time that in a preclinical tumor model relevant to human glioblastoma, treated as in clinical routine, 5-ALA administration, although leading to important accumulation of PpIX, does not potentiate radiotherapy. Full article
(This article belongs to the Special Issue Resistance Mechanisms in Malignant Brain Tumors)
Show Figures

Figure 1

Back to TopTop