Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = electronic polymedication monitoring

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1207 KB  
Article
CYP2D6 Genotype and Pharmacovigilance Impact on Autism Spectrum Disorder: A Naturalistic Study with Extreme Phenotype Analysis
by Pura Ballester, Cristina Espadas, Susana Almenara, Jordi Barrachina, Javier Muriel, Enrique Ramos, Natalia Toral, César Belda and Ana M. Peiró
Pharmaceuticals 2023, 16(7), 954; https://doi.org/10.3390/ph16070954 - 3 Jul 2023
Cited by 1 | Viewed by 2052
Abstract
The long-term use of psychopharmacology medications in autism spectrum disorder (ASD) hitherto remains controversial due to a lack of evidence about safety and tolerability. In this regard, genotyping the metabolizing enzyme cytochrome P450 (CYP) 2D6, especially its extreme phenotypes, could help to [...] Read more.
The long-term use of psychopharmacology medications in autism spectrum disorder (ASD) hitherto remains controversial due to a lack of evidence about safety and tolerability. In this regard, genotyping the metabolizing enzyme cytochrome P450 (CYP) 2D6, especially its extreme phenotypes, could help to prevent drug-related adverse reactions or adverse events (AEs). There are several medications warranting CYP2D6 screening that are consumed by people with ASD, such as risperidone and aripiprazole to name a few. A naturalistic observational study was carried out in participants with ASD to analyze the influence of the CYP2D6 phenotype in drug tolerability using a local pharmacovigilance system created for this study. In this case, AEs were identified from participants’ electronic health records (EHRs) and paper registries. Other variables were collected: socio-demographic information, comorbidities, and psychopharmacology prescriptions (polypharmacy defined as ≥4 simultaneous prescriptions) and doses. The genetic analysis included allelic discrimination (CYP2D6*1, *2, *3, *4, *5, *6, *10, *17, and *41) and copy number variations. All of these were used to determine theoretical phenotypes of the metabolic profiles: poor (PM); intermediate (IM); normal (NM); and ultra-rapid (UM). Sex differences were analyzed. A total of 71 participants (30 ± 10 years old, 82% male, 45% CYP2D6 NM phenotype (32 participants)) with a median of 3 (IQR 2–4) comorbidities per person, mainly urinary incontinence (32%) and constipation (22%), were included. CYP2D6 UM showed the highest rate of polypharmacy, whilst, IM participants had the highest rates of neurological and psychiatric AEs, even worse if a CYP2D6 inhibitor drug was prescribed simultaneously. CYP2D6 pharmacogenomics and the monitoring of new antipsychotic prescriptions may make a difference in medication safety in adults with ASD. Particularly in those with psychopharmacology polymedication, it can help with AE avoidance and understanding. Full article
(This article belongs to the Special Issue Pharmacogenomics - A Genetic Approach to Drug Therapy and Development)
Show Figures

Graphical abstract

10 pages, 465 KB  
Article
Pattern of Timing Adherence Could Guide Recommendations for Personalized Intake Schedules
by Philipp Walter, Isabelle Arnet, Michel Romanens, Dimitrios A. Tsakiris and Kurt E. Hersberger
J. Pers. Med. 2012, 2(4), 267-276; https://doi.org/10.3390/jpm2040267 - 28 Nov 2012
Cited by 9 | Viewed by 6924
Abstract
Deviations in execution from the prescribed drug intake schedules (timing non adherence) are frequent and may pose a substantial risk for therapeutic failure. Simple methods to monitor timing adherence with multiple drugs are missing. A new technology, i.e., the polymedication electronic monitoring [...] Read more.
Deviations in execution from the prescribed drug intake schedules (timing non adherence) are frequent and may pose a substantial risk for therapeutic failure. Simple methods to monitor timing adherence with multiple drugs are missing. A new technology, i.e., the polymedication electronic monitoring system (POEMS) attached to a multidrug punch card, was used in a clinical trial on outpatients with prescribed medicines for vascular risk reduction. The complete delineation of timing adherence allows for the calculation of objective adherence parameters and the linking of exposure with drug-drug interactions. A sub-analysis was performed on 68 patients, who were prescribed lipid lowering therapy. A smaller intake time variability of the lipid lowering drug was significantly associated with better levels of LDL-cholesterol, independently of the time of day. This finding may challenge current general recommendations for the timing of lipid lowering drugs’ intake and substantiate that inter-individual differences in timing adherence may contribute to response variability. Thus, objective parameters based on multidrug adherence monitoring should be considered as independent variables in personalized medicine. In clinical practice, personalized intake recommendations according to patients’ pattern of timing adherence may help to optimize the effectiveness of lipid lowering agents. Full article
(This article belongs to the Special Issue Dosage Personalization in Modern Medicine)
Show Figures

Figure 1

Back to TopTop