Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = drozitumab

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2538 KiB  
Article
Implementing Patient-Derived Xenografts to Assess the Effectiveness of Cyclin-Dependent Kinase Inhibitors in Glioblastoma
by Janis J. Noonan, Monika Jarzabek, Frank A. Lincoln, Brenton L. Cavanagh, Arhona R. Pariag, Viktorija Juric, Leonie S. Young, Keith L. Ligon, Hanne Jahns, Daniella Zheleva, Jochen H. M. Prehn, Markus Rehm, Annette T. Byrne and Brona M. Murphy
Cancers 2019, 11(12), 2005; https://doi.org/10.3390/cancers11122005 - 12 Dec 2019
Cited by 13 | Viewed by 4988
Abstract
Glioblastoma (GBM) is the most common primary brain tumor with no available cure. As previously described, seliciclib, a first-generation cyclin-dependent kinase (CDK) inhibitor, down-regulates the anti-apoptotic protein, Mcl-1, in GBM, thereby sensitizing GBM cells to the apoptosis-inducing effects of the death receptor ligand, [...] Read more.
Glioblastoma (GBM) is the most common primary brain tumor with no available cure. As previously described, seliciclib, a first-generation cyclin-dependent kinase (CDK) inhibitor, down-regulates the anti-apoptotic protein, Mcl-1, in GBM, thereby sensitizing GBM cells to the apoptosis-inducing effects of the death receptor ligand, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Here, we have assessed the efficacy of seliciclib when delivered in combination with the antibody against human death receptor 5, drozitumab, in clinically relevant patient-derived xenograft (PDX) models of GBM. A reduction in viability and significant levels of apoptosis were observed in vitro in human GBM neurospheres following treatment with seliciclib plus drozitumab. While the co-treatment strategy induced a similar effect in PDX models, the dosing regimen required to observe seliciclib-targeted responses in the brain, resulted in lethal toxicity in 45% of animals. Additional studies showed that the second-generation CDK inhibitor, CYC065, with improved potency in comparison to seliciclib, induced a significant decrease in the size of human GBM neurospheres in vitro and was well tolerated in vivo, upon administration at clinically relevant doses. This study highlights the continued need for robust pre-clinical assessment of promising treatment approaches using clinically relevant models. Full article
(This article belongs to the Special Issue Tumors of the Central Nervous System: An Update)
Show Figures

Figure 1

Back to TopTop