Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = double-wire narrow-gap welding

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 76482 KiB  
Article
Study of Process, Microstructure, and Properties of Double-Wire Narrow-Gap Gas Metal Arc Welding Low-Alloy Steel
by Ning Xiao, Haoyu Kong, Qingjie Sun and Ninshu Ma
Materials 2024, 17(24), 6183; https://doi.org/10.3390/ma17246183 - 18 Dec 2024
Cited by 1 | Viewed by 873
Abstract
Narrow-gap arc welding is an efficient method that significantly enhances industrial production efficiency and reduces costs. This study investigates the application of low-alloy steel wire EG70-G in narrow-gap gas metal arc welding (GMAW) on thick plates. Experimental observations were made to examine the [...] Read more.
Narrow-gap arc welding is an efficient method that significantly enhances industrial production efficiency and reduces costs. This study investigates the application of low-alloy steel wire EG70-G in narrow-gap gas metal arc welding (GMAW) on thick plates. Experimental observations were made to examine the arc behavior, droplet transition behavior, and weld formation characteristics of double-wire welding under various process parameters. Additionally, the temperature field of the welding process was simulated using finite element software (ABAQUS 2020). Finally, the microstructure and microhardness of the fusion zone in a double-wire, single-pass filled joint under the different welding speeds were compared and analyzed. The results demonstrate that the use of double-wire GMAW in narrow-gap welding yielded positive outcomes. Optimal settings for wire feeding speed, welding speed, and double-wire lateral spacing significantly enhanced welding quality, effectively preventing side wall non-fusion and poor weld profiles in the welded joints. The microstructure of the fusion zone produced at a higher welding speed (11 mm/s) was finer, resulting in increased microhardness compared to welds obtained at a lower speed (8 mm/s). This is attributed to the shorter duration of the liquid molten pool and the faster cooling rate associated with higher welding speed. This research provides a reference for the practical application of double-wire narrow-gap gas metal arc welding technology. Full article
Show Figures

Figure 1

12 pages, 11565 KiB  
Article
Application of Cold Wire Gas Metal Arc Welding for Narrow Gap Welding (NGW) of High Strength Low Alloy Steel
by Rafael A. Ribeiro, Paulo D. C. Assunção, Emanuel B. F. Dos Santos, Ademir A. C. Filho, Eduardo M. Braga and Adrian P. Gerlich
Materials 2019, 12(3), 335; https://doi.org/10.3390/ma12030335 - 22 Jan 2019
Cited by 20 | Viewed by 5531
Abstract
Narrow gap welding is a prevalent technique used to decrease the volume of molten metal and heat required to fill a joint. Consequently, deleterious effects such as distortion and residual stresses may be reduced. One of the fields where narrow groove welding is [...] Read more.
Narrow gap welding is a prevalent technique used to decrease the volume of molten metal and heat required to fill a joint. Consequently, deleterious effects such as distortion and residual stresses may be reduced. One of the fields where narrow groove welding is most employed is pipeline welding where misalignment, productivity and mechanical properties are critical to a successful final assemblage of pipes. This work reports the feasibility of joining pipe sections with 4 mm-wide narrow gaps machined from API X80 linepipe using cold wire gas metal arc welding. Joints were manufactured using the standard gas metal arc welding and the cold wire gas metal arc welding processes, where high speed imaging, and voltage and current monitoring were used to study the arc dynamic features. Standard metallographic procedures were used to study sidewall penetration, and the evolution of the heat affected zone during welding. It was found that cold wire injection stabilizes the arc wandering, decreasing sidewall penetration while almost doubling deposition. However, this also decreases penetration, and incomplete penetration was found in the cold wire specimens as a drawback. However, adjusting the groove geometry or changing the welding parameters would resolve this penetration issue. Full article
(This article belongs to the Special Issue Welding, Joining and Coating of Metallic Materials)
Show Figures

Figure 1

Back to TopTop