Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = dopamine receptor blocker agents

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 555 KB  
Review
Overview of Movement Disorders Secondary to Drugs
by Jamir Pitton Rissardo, Nilofar Vora, Bejoi Mathew, Vikas Kashyap, Sara Muhammad and Ana Letícia Fornari Caprara
Clin. Pract. 2023, 13(4), 959-976; https://doi.org/10.3390/clinpract13040087 - 18 Aug 2023
Cited by 23 | Viewed by 9178
Abstract
Drug-induced movement disorders affect a significant percentage of individuals, and they are commonly overlooked and underdiagnosed in clinical practice. Many comorbidities can affect these individuals, making the diagnosis even more challenging. Several variables, including genetics, environmental factors, and aging, can play a role [...] Read more.
Drug-induced movement disorders affect a significant percentage of individuals, and they are commonly overlooked and underdiagnosed in clinical practice. Many comorbidities can affect these individuals, making the diagnosis even more challenging. Several variables, including genetics, environmental factors, and aging, can play a role in the pathophysiology of these conditions. The Diagnostic and Statistical Manual of Mental Disorders (DSM) and the International Statistical Classification of Diseases and Related Health Problems (ICD) are the most commonly used classification systems in categorizing drug-induced movement disorders. This literature review aims to describe the abnormal movements associated with some medications and illicit drugs. Myoclonus is probably the most poorly described movement disorder, in which most of the reports do not describe electrodiagnostic studies. Therefore, the information available is insufficient for the diagnosis of the neuroanatomical source of myoclonus. Drug-induced parkinsonism is rarely adequately evaluated but should be assessed with radiotracers when these techniques are available. Tardive dyskinesias and dyskinesias encompass various abnormal movements, including chorea, athetosis, and ballism. Some authors include a temporal relationship to define tardive syndromes for other movement disorders, such as dystonia, tremor, and ataxia. Antiseizure medications and antipsychotics are among the most thoroughly described drug classes associated with movement disorders. Full article
Show Figures

Figure 1

16 pages, 3360 KB  
Article
Cymbopogon citratus Essential Oil: Extraction, GC–MS, Phytochemical Analysis, Antioxidant Activity, and In Silico Molecular Docking for Protein Targets Related to CNS
by Ana G. Cortes-Torres, Guiee N. López-Castillo, Josefina L. Marín-Torres, Roberto Portillo-Reyes, Felix Luna, Beatriz E. Baca, Jesús Sandoval-Ramírez and Alan Carrasco-Carballo
Curr. Issues Mol. Biol. 2023, 45(6), 5164-5179; https://doi.org/10.3390/cimb45060328 - 16 Jun 2023
Cited by 13 | Viewed by 7815
Abstract
This study analyzed the chemical composition of Cymbopogon citratus essential oil from Puebla, México, assessed its antioxidant activity, and evaluated in silico protein–compound interactions related to central nervous system (CNS) physiology. GC–MS analysis identified myrcene (8.76%), Z-geranial (27.58%), and E-geranial (38.62%) as the [...] Read more.
This study analyzed the chemical composition of Cymbopogon citratus essential oil from Puebla, México, assessed its antioxidant activity, and evaluated in silico protein–compound interactions related to central nervous system (CNS) physiology. GC–MS analysis identified myrcene (8.76%), Z-geranial (27.58%), and E-geranial (38.62%) as the main components, with 45 other compounds present, which depends on the region and growing conditions. DPPH and Folin–Ciocalteu assays using the leaves extract show a promising antioxidant effect (EC50 = 48.5 µL EO/mL), reducing reactive oxygen species. The bioinformatic tool SwissTargetPrediction (STP) shows 10 proteins as potential targets associated with CNS physiology. Moreover, protein–protein interaction diagrams suggest that muscarinic and dopamine receptors are related to each other through a third party. Molecular docking reveals that Z-geranial has higher binding energy than M1 commercial blocker and blocks M2, but not M4 muscarinic acetylcholine receptors, whereas β-pinene and myrcene block M1, M2, and M4 receptors. These actions may positively affect cardiovascular activity, memory, Alzheimer’s disease, and schizophrenia. This study highlights the significance of understanding natural product interactions with physiological systems to uncover potential therapeutic agents and advanced knowledge on their benefits for human health. Full article
Show Figures

Figure 1

Back to TopTop