Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = disposable electrochemical printed (DEP) chips

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2131 KiB  
Article
DEP-On-Go for Simultaneous Sensing of Multiple Heavy Metals Pollutants in Environmental Samples
by Madhu Biyani, Radhika Biyani, Tomoko Tsuchihashi, Yuzuru Takamura, Hiromi Ushijima, Eiichi Tamiya and Manish Biyani
Sensors 2017, 17(1), 45; https://doi.org/10.3390/s17010045 - 27 Dec 2016
Cited by 35 | Viewed by 11032
Abstract
We describe a simple and affordable “Disposable electrode printed (DEP)-On-Go” sensing platform for the rapid on-site monitoring of trace heavy metal pollutants in environmental samples for early warning by developing a mobile electrochemical device composed of palm-sized potentiostat and disposable unmodified screen-printed electrode [...] Read more.
We describe a simple and affordable “Disposable electrode printed (DEP)-On-Go” sensing platform for the rapid on-site monitoring of trace heavy metal pollutants in environmental samples for early warning by developing a mobile electrochemical device composed of palm-sized potentiostat and disposable unmodified screen-printed electrode chips. We present the analytical performance of our device for the sensitive detection of major heavy metal ions, namely, mercury, cadmium, lead, arsenic, zinc, and copper with detection limits of 1.5, 2.6, 4.0, 5.0, 14.4, and, 15.5 μg·L−1, respectively. Importantly, the utility of this device is extended to detect multiple heavy metals simultaneously with well-defined voltammograms and similar sensitivity. Finally, “DEP-On-Go” was successfully applied to detect heavy metals in real environmental samples from groundwater, tap water, house dust, soil, and industry-processed rice and noodle foods. We evaluated the efficiency of this system with a linear correlation through inductively coupled plasma mass spectrometry, and the results suggested that this system can be reliable for on-site screening purposes. On-field applications using real samples of groundwater for drinking in the northern parts of India support the easy-to-detect, low-cost (<1 USD), rapid (within 5 min), and reliable detection limit (ppb levels) performance of our device for the on-site detection and monitoring of multiple heavy metals in resource-limited settings. Full article
(This article belongs to the Special Issue Point-of-Care Biosensors)
Show Figures

Figure 1

16 pages, 2723 KiB  
Review
Printable Electrochemical Biosensors: A Focus on Screen-Printed Electrodes and Their Application
by Keiichiro Yamanaka, Mun’delanji C. Vestergaard and Eiichi Tamiya
Sensors 2016, 16(10), 1761; https://doi.org/10.3390/s16101761 - 21 Oct 2016
Cited by 154 | Viewed by 14326
Abstract
In this review we present electrochemical biosensor developments, focusing on screen-printed electrodes (SPEs) and their applications. In particular, we discuss how SPEs enable simple integration, and the portability needed for on-field applications. First, we briefly discuss the general concept of biosensors and quickly [...] Read more.
In this review we present electrochemical biosensor developments, focusing on screen-printed electrodes (SPEs) and their applications. In particular, we discuss how SPEs enable simple integration, and the portability needed for on-field applications. First, we briefly discuss the general concept of biosensors and quickly move on to electrochemical biosensors. Drawing from research undertaken in this area, we cover the development of electrochemical DNA biosensors in great detail. Through specific examples, we describe the fabrication and surface modification of printed electrodes for sensitive and selective detection of targeted DNA sequences, as well as integration with reverse transcription-polymerase chain reaction (RT-PCR). For a more rounded approach, we also touch on electrochemical immunosensors and enzyme-based biosensors. Last, we present some electrochemical devices specifically developed for use with SPEs, including USB-powered compact mini potentiostat. The coupling demonstrates the practical use of printable electrode technologies for application at point-of-use. Although tremendous advances have indeed been made in this area, a few challenges remain. One of the main challenges is application of these technologies for on-field analysis, which involves complicated sample matrices. Full article
(This article belongs to the Special Issue Point-of-Care Biosensors)
Show Figures

Figure 1

Back to TopTop