Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = dispersed phase flow (Qd)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2544 KiB  
Article
Generation of Photopolymerized Microparticles Based on PEGDA Hydrogel Using T-Junction Microfluidic Devices: Effect of the Flow Rates
by Gabriela Hinojosa-Ventura, Mario Alberto García-Ramírez, José Manuel Acosta-Cuevas and Orfil González-Reynoso
Micromachines 2023, 14(7), 1279; https://doi.org/10.3390/mi14071279 - 21 Jun 2023
Cited by 2 | Viewed by 3118
Abstract
The formation of microparticles (MPs) of biocompatible and biodegradable hydrogels such as polyethylene glycol diacrylate (PEGDA) utilizing microfluidic devices is an attractive option for entrapment and encapsulation of active principles and microorganisms. Our research group has presented in previous studies a [...] Read more.
The formation of microparticles (MPs) of biocompatible and biodegradable hydrogels such as polyethylene glycol diacrylate (PEGDA) utilizing microfluidic devices is an attractive option for entrapment and encapsulation of active principles and microorganisms. Our research group has presented in previous studies a formulation to produce these hydrogels with adequate physical and mechanical characteristics for their use in the formation of MPs. In this work, hydrogel MPs are formed based on PEGDA using a microfluidic device with a T-junction design, and the MPs become hydrogel through a system of photopolymerization. The diameters of the MPs are evaluated as a function of the hydrodynamic condition flow rates of the continuous (Qc) and disperse (Qd) phases, measured by optical microscopy, and characterized through scanning electron microscopy. As a result, the following behavior is found: the diameter is inversely proportional to the increase in flow in the continuous phase (Qc), and it has a significant statistical effect that is greater than that in the flow of the disperse phase (Qd). While the diameter of the MPs is proportional to Qd, it does not have a significant statistical effect on the intervals of flow studied. Additionally, the MPs’ polydispersity index (PDI) was measured for each experimental hydrodynamic condition, and all values were smaller than 0.05, indicating high homogeneity in the MPs. The microparticles have the potential to entrap pharmaceuticals and microorganisms, with possible pharmacological and bioremediation applications. Full article
(This article belongs to the Special Issue Advanced Biomanufacturing for Biomedical Engineering Applications)
Show Figures

Figure 1

12 pages, 4140 KiB  
Article
Fabrication of 512-Channel Geometrical Passive Breakup Device for High-Throughput Microdroplet Production
by Chul Min Kim and Gyu Man Kim
Micromachines 2019, 10(10), 709; https://doi.org/10.3390/mi10100709 - 18 Oct 2019
Cited by 9 | Viewed by 3766
Abstract
We present a 512-microchannel geometrical passive breakup device for the mass production of microdroplets. The mass production is achieved through the passive breakup of a droplet into two droplets. The microchannel geometry in the microfluidic device was designed and optimized by focusing on [...] Read more.
We present a 512-microchannel geometrical passive breakup device for the mass production of microdroplets. The mass production is achieved through the passive breakup of a droplet into two droplets. The microchannel geometry in the microfluidic device was designed and optimized by focusing on stable droplet splitting for microdroplet preparation and minimizing the hydraulic resistance of the microchannel for achieving high throughput; the minimization of hydraulic resistance was achieved by employing analytical approaches. A total of 512 microdroplets could be prepared from a single liquid plug by making the liquid plug pass through nine sequential T-junctions in the microfluidic device, which led to the splitting of droplets. The microfluidic device was fabricated using conventional photolithography and polydimethylsiloxane (PDMS) casting. We estimated the performance of the microfluidic device in terms of the size distribution and production rate of microdroplets. Microdroplets with a diameter of 40.0 ± 2.2 µm were prepared with a narrow size distribution (coefficient of variation (CV) < 5.5%) for flow rates of disperse (Qd) and continuous phase (Qc) of 2 and 3 mL/h, respectively. Microdroplet production rates were measured using a high-speed camera. Furthermore, monodisperse microdroplets were prepared at 42.7 kHz for Qd and Qc of 7 and 15 mL/h, respectively. Finally, the feasibility of the fabricated microfluidic device was verified by using it to prepare biodegradable chitosan microspheres. Full article
Show Figures

Figure 1

28 pages, 5860 KiB  
Article
From Single Microparticles to Microfluidic Emulsification: Fundamental Properties (Solubility, Density, Phase Separation) from Micropipette Manipulation of Solvent, Drug and Polymer Microspheres
by Koji Kinoshita, Elisa Parra, Abdirazak Hussein, Anders Utoft, Prasad Walke, Robin De Bruijn and David Needham
Processes 2016, 4(4), 49; https://doi.org/10.3390/pr4040049 - 30 Nov 2016
Cited by 13 | Viewed by 9524
Abstract
The micropipette manipulation technique is capable of making fundamental single particle measurements and analyses. This information is critical for establishing processing parameters in systems such as microfluidics and homogenization. To demonstrate what can be achieved at the single particle level, the micropipette technique [...] Read more.
The micropipette manipulation technique is capable of making fundamental single particle measurements and analyses. This information is critical for establishing processing parameters in systems such as microfluidics and homogenization. To demonstrate what can be achieved at the single particle level, the micropipette technique was used to form and characterize the encapsulation of Ibuprofen (Ibp) into poly(lactic-co-glycolic acid) (PLGA) microspheres from dichloromethane (DCM) solutions, measuring the loading capacity and solubility limits of Ibp in typical PLGA microspheres. Formed in phosphate buffered saline (PBS), pH 7.4, Ibp/PLGA/DCM microdroplets were uniformly solidified into Ibp/PLGA microparticles up to drug loadings (DL) of 41%. However, at DL 50 wt% and above, microparticles showed a phase separated pattern. Working with single microparticles, we also estimated the dissolution time of pure Ibp microspheres in the buffer or in detergent micelle solutions, as a function of the microsphere size and compare that to calculated dissolution times using the Epstein-Plesset (EP) model. Single, pure Ibp microparticles precipitated as liquid phase microdroplets that then gradually dissolved into the surrounding PBS medium. Analyzing the dissolution profiles of Ibp over time, a diffusion coefficient of 5.5 ± 0.2 × 10−6 cm2/s was obtained by using the EP model, which was in excellent agreement with the literature. Finally, solubilization of Ibp into sodium dodecyl sulfate (SDS) micelles was directly visualized microscopically for the first time by the micropipette technique, showing that such micellization could increase the solubility of Ibp from 4 to 80 mM at 100 mM SDS. We also introduce a particular microfluidic device that has recently been used to make PLGA microspheres, showing the importance of optimizing the flow parameters. Using this device, perfectly smooth and size-homogeneous microparticles were formed for flow rates of 0.167 mL/h for the dispersed phase (Qd) and 1.67 mL/h for the water phase (Qc), i.e., a flow rate ratio Qd/Qc of 10, based on parameters such as interfacial tension, dissolution rates and final concentrations. Thus, using the micropipette technique to observe the formation, and quantify solvent dissolution, solidification or precipitation of an active pharmaceutical ingredient (API) or excipient for single and individual microparticles, represents a very useful tool for understanding microsphere-processes and hence can help to establish process conditions without resorting to expensive and material-consuming bulk particle runs. Full article
(This article belongs to the Special Issue Emulsification Processes)
Show Figures

Graphical abstract

Back to TopTop